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Abstract

Low dose computer tomography (CT) acquisition using reduced radiation or sparse angle
measurements is recommended to decrease the harmful effects of X-ray radiation. Recent
works successfully apply deep networks to the problem of low dose CT recovery on benchmark
datasets. However, their robustness needs a thorough evaluation before use in clinical
settings. In this work, we evaluate the robustness of different deep learning approaches
and classical methods for CT recovery. We show that deep networks, including model
based networks encouraging data consistency are more susceptible to untargeted attacks.
Surprisingly, we observe that data consistency is not heavily affected even for these poor
quality reconstructions, motivating the need for better regularization for the networks.
We demonstrate the feasibility of universal attacks and study attack transferability across
different methods. We analyze robustness to attacks causing localized changes in clinically
relevant regions. Both classical approaches and deep networks are affected by such attacks
leading to change in visual appearance of localized lesions, for extremely small perturbations.
As the resulting reconstructions have high data consistency with original measurements,
these localized attacks can be used to explore the solution space of CT recovery problem.

Keywords: Computer tomography, robustness, adversarial attacks, image reconstruction.

1. Introduction

Computer tomography (CT) is a non-invasive imaging technique widely used in medical
diagnosis. The procedure involves recording attenuated X-ray radiation projected at different
angles by a scanner rotating around a target. The recorded measurements are arranged into
a sinogram, from which a CT image is reconstructed. As exposure of patients to X-rays
poses serious health risks, different solutions to low-dose CT acquisition have been proposed
under the ALARA (as low as reasonably achievable) principle (Slovis, 2002; Newman and
Callahan, 2011). These protocols can be broadly classified into two categories- i) adjusting
the settings on the CT scanner tube to reduce total number of X-ray photons ii) recording
measurements from fewer projection angles. However, there exists a trade-off between dose
reduction during CT acquisition and diagnostic quality. Lower number of X-ray photons
degrades reconstruction quality due to increased image noise level. On the other hand, CT
recovery from fewer projection angles can suffer from severe artefacts. Further, sparse-view
CT is an ill-posed problem, and there can be many valid solutions for the same measurement.

Traditional approaches to ill-posed CT recovery impose suitable priors such as total
variation (Sidky et al., 2006; Chen et al., 2013) in a variational reconstruction algorithm.
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Recent works (Chen et al., 2017; He et al., 2020) train deep networks for sparse view
CT recovery. While deep networks achieve impressive performance, they lack convergence
guarantees provided by classical approaches. Moreover, sensitivity of deep networks to
adversarial examples (Szegedy et al., 2014; Goodfellow et al., 2015) is a serious concern in
clinical applications. In this paper, we analyze the robustness of different classical and deep
learning methods to norm bounded additive adversarial perturbations. We show that deep
networks, including the model inspired ones are significantly more susceptible to untargeted
adversarial examples than classical methods. Surprisingly, even the poor reconstructions
display a reasonable data consistency with their input, motivating the need for better
regularization in these networks. We demonstrate the feasibility of universal attacks and
study attack transferability across different methods. We also show that both classical and
deep learning methods are sensitive to localized adversarial attacks aiming to alter the visual
appearance of a small diagnostically relevant regions. Such local attacks are possible with
very low adversarial noise and high data consistency with original measurement, indicating
that multiple diagnostically different solutions can be obtained with high data consistency.

2. Background and Related Work

2.1. CT Acquisition and Reconstruction

In CT acquisition, the forward operator is given by the 2D Radon transform (Radon, 1986)
which models the attenuation of the radiation passing through the target by calculating
line integral along the path of X-ray beam. The measurement, which is a sinogram consists
of the recorded integrals for different distances and measurement angles. Since the Radon
transform is linear, the measurement process can be written as:

f = Au+ n (1)

where f , A, u, n represent the sinogram, forward Radon transform, ground truth image and
measurement noise respectively. The aim is to recover a CT image û from the sinogram f .
Linearly filtering in Fourier space, commonly referred to as filtered back projection (FBP)
(Feldkamp et al., 1984), is one standard classical approach to CT recovery. Variational
approaches (Sidky et al., 2006; Chen et al., 2013) find a minimizer of the energy function

û = argmin
u

1

2
∥Au− f∥2 +R(u) (2)

for a suitable regularizer R(u) such as the total variation ∥∇u∥2,1. In the following, we
review recent deep learning approaches for such ill-posed image recovery problems.

2.2. Deep learning for Image and CT Reconstruction

Deep learning approaches to image reconstruction tasks encompass a wide array of methods:
i) Fully learned methods directly invert the forward imaging model (Zhu et al., 2018).
Examples for CT recovery include iRadonmap (He et al., 2020) and ADAPTIVE-Net (Ge
et al., 2020), which also learn the filtered back projection operation

û = N (f) (3)
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ii) Learning deep neural network post-processors denoise an initial reconstruction such as
output from the filtered-back-projection operator B†(·) (Chen et al., 2017; Jin et al., 2017;
Yang et al., 2018; Zhang et al., 2018; Pelt et al., 2018; Kuanar et al., 2019)

û = N (B†(f)) (4)

iii) Unrolled optimization networks are end-to-end trained model inspired neural networks
which unroll fixed iterations of algorithms such as gradient descent, primal-dual hybrid
gradient, projected gradient descent with learned parameters (Adler and Öktem, 2017;
Aggarwal et al., 2018; Adler and Öktem, 2018). Closely related is the method of using
trained networks for projection or proximal step (He et al., 2018; Gupta et al., 2018).
iv) Use of trained/untrained neural network priors in a variational inference (Bora et al.,
2017; Rick Chang et al., 2017; Meinhardt et al., 2017; Ulyanov et al., 2018; Heckel et al.,
2019). For CT recovery, (Baguer et al., 2020) use untrained neural network prior (Ulyanov
et al., 2018), and (Song et al., 2022) use generative models trained on CT images.

In this work, we analyze the adversarial robustness of the deep learning paradigms
i)− iii), which can recover CT images in a single forward pass. In addition, we consider the
classical approaches of filtered back projection and energy minimization with TV prior. We
exclude iv) in our experiments due to high computational complexity.

2.3. Adversarial Attacks on Image Reconstruction

Adversarial attacks refer to a phenomenon where a carefully crafted imperceptible change in
the input causes a catastrophic failure of neural networks. Starting from (Szegedy et al.,
2014; Goodfellow et al., 2015), many works focused on stronger adversarial attacks and
mechanisms to defend classification networks from adversarial attacks. Recent works (Antun
et al., 2020; Raj et al., 2020) demonstrated the susceptibility of image reconstruction networks
to adversarial attacks. While (Antun et al., 2020) investigate instabilities to perturbations in
the image domain, (Raj et al., 2020) consider adversarial examples in measurement domain
and propose adversarial training to improve robustness. However, these works consider
mainly untargeted attacks for networks doing direct inversion or post-processing. A few
recent works (Choi et al., 2019; Gandikota et al., 2022) also investigated the adversarial
robustness of image restoration methods. (Cheng et al., 2020) show that MRI recovery
networks can fail to recover tiny features under adversarial attacks and perform robust
training to increase the network’s sensitivity to these small features. (Darestani et al.,
2021; Morshuis et al., 2022) show that adversarial perturbations can alter diagnostically
relevant regions in recovered MRI images. In the context of CT recovery, (Huang et al.,
2018) perform preliminary investigations whether additive adversarial perturbations can lead
to incorrect reconstruction of an existing lesion. Closely related to our work, (Genzel et al.,
2022; Wu et al., 2022) also investigate the adversarial robustness of different approaches for
CT recovery. They mainly considered untargeted attacks, with some preliminary experiments
in (Genzel et al., 2022) on targeted changes indicating that reconstruction networks are
largely robust to targeted changes. In contrast, we study susceptibility of CT recovery
methods to untargeted attacks, universal attacks and localized adversarial attacks targeting
diagnostically relevant regions in thoracic CT scans from (Armato III et al., 2011).
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3. Analyzing Stability of (CT) Image Recovery

Ideally, the recovery algorithm or network N should have a small Lipschitz constant L so
that small changes in the input produce only small bounded changes in the reconstruction,

∥N (f1)−N (f2)∥ ≤ L∥f1 − f2∥. (5)

However, exactly computing Lipschitz constant has extremely high computational complexity
(Jordan and Dimakis, 2020) even for moderately sized neural networks. Recent works
(Combettes and Pesquet, 2020; Jordan and Dimakis, 2020; Huang et al., 2021) instead
estimate an upper bound on Lipschitz constant. On the other hand, it is easier to analyze
the stability of classical approaches. The stability of the standard linear techniques can be
analyzed via the singular values of the reconstruction operator, see, e.g. (Bauermeister et al.,
2020) for learning linear reconstructions in such a context. For nonlinear variational energy
minimization approaches, a stability estimate shown in (Burger et al., 2007) is

∥f1 − f2∥2 ≥ ∥Au1 −Au2∥2 + 2⟨p1 − p2, u1 − u2⟩, p1 ∈ ∂R(u1), p2 ∈ ∂R(u2), (6)

where the term ⟨p1 − p2, u1 − u2⟩ is the ’symmetric Bregman distance’ with respect to the
convex regularizer R.

3.1. Adversarial Attacks on CT recovery

Adversarial attacks on image recovery methods make small changes to the inputs causing
unpredictable large changes in the output. In this work, we consider robustness to tiny L∞
norm bounded additive perturbations in the measurement domain. We assume that the
parameters of the neural network N or the recovery algorithm is fully known to the attacker.
Untargeted Attacks: Here the aim is to find an additive L∞ norm constrained perturba-
tion in the measurement domain that maximizes the reconstruction error:

δadv = argmax
δ∈Rm

∥N (f + δ)−N (f)∥2 s.t. ∥δ∥∞ ≤ ϵ. (7)

Localized Attacks: Here the goal is to find an additive L∞ norm constrained perturbation
that produces a change the visual appearance to alter predicted malignancy in a localized
clinically relevant region. We utilize an adversarially trained classifier Nθ trained to classify
chest CT nodules to guide the attack towards a plausible change in visual appearance locally.
Note that using a non-robust classifier in the attack would cause mis-classification even
without perceptible changes in reconstruction. Our localized attack can be formulated as:

δadv = argmax
δ∈Rm

E(Nθ (gc (N (f + δ))) , y) s.t. ∥δ∥∞ ≤ ϵ. (8)

where gc(·) crops the region of interest, and y = Nθ (gc (N (f))) is the predicted label for the
region of interest in the clean reconstruction. E(·) refers to the energy function (loss) to be
maximized for binary classification of nodules, which is the binary cross entropy loss. To
ensure that the degradation remains localized, and to avoid artifacts at the boundary of the
local region, we apply a smoothed mask to the adversarial noise setting at every step. The
mask is calculated as the sinogram of the Gaussian smoothed spatial mask corresponding to
region of interest, and normalized to have maximum value of 1.
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Figure 1: Untargeted attack on CT reconstruction methods for ϵ values 0.01 and 0.025.

Method
û (Aû, f)

ϵ
ûδ (Aûδ, f) (Aûδ, fδ) (f, fδ) Lb

PSNR/SSIM/dBreg PSNR PSNR/SSIM/dBreg PSNR PSNR PSNR Empir

FBP 30.37/0.738/0.018 33.82
0.01 25.18/0.448/0.029 33.36 33.37 40.20

15.030.025 18.68/0.194/0.049 31.47 31.43 32.51
0.05 13.02/0.074/0.081 28.46 28.34 26.91

TV 31.62/0.763/0.018 36.52
0.01 25.20/0.615/0.026 35.62 35.72 40.36

16.520.025 18.32/0.365/0.044 32.51 33.24 32.71
0.05 12.99/0.150/0.077 28.66 30.01 27.22

FBP-Unet 35.47/0.837/0.013 36.47
0.01 18.39/0.287/0.081 35.06 35.71 40.28

46.710.025 12.18/0.095/0.152 29.82 30.95 32.77
0.05 7.38/0.034/0.227 24.86 25.93 27.39

iRadonMap 33.94/0.810/0.014 36.03
0.01 17.98/0.326/0.062 29.62 29.90 40.22

43.800.025 10.85/0.084/0.140 24.07 24.51 32.60
0.05 6.24/0.026/0.215 21.50 21.98 27.16

LearnedPD 35.73/0.842/0.012 36.46
0.01 9.47/0.164/0.230 25.27 25.50 40.48

143.390.025 3.38/0.030/0.467 23.05 23.38 32.95
0.05 0.36/ 0.008/0.623 28.28 28.72 27.17

LearnedGD 34.55/0.815/0.014 36.43
0.01 21.14/0.504/0.036 35.18 35.62 40.39

30.480.025 13.90/0.291/0.069 31.62 32.82 32.80
0.05 8.64/0.180/0.099 28.11 29.64 27.50

Table 1: Comparison of robustness to untargeted attacks on different CT reconstruction
methods using 20 attack iterations on first 100 samples LoDoPAB testset.

Universal Attacks: Here we aim to find an input-agnostic L∞ norm constrained adversarial
perturbation that maximizes the reconstruction error of a recovery method N for any input.

δuniadv = argmax
δ∈Rm

∑
examples i

∥N (fi + δ)−N (fi)∥2 s.t. ∥δ∥∞ ≤ ϵ. (9)

We solve the constrained optimization problems (7), (8) and (9) using projected gradient de-
scent (PGD) (Madry et al., 2018), with gradient updates using Adam (Kingma and Ba, 2015).
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4. Experiments and Results

We conduct experiments with low-dose parallel beam (LoDoPaB) CT dataset (Leuschner
et al., 2021), consisting of data pairs of simulated low-intensity measurements for sampling
513 out of 1000 parallel beams and corresponding ground truth human chest CT images
from the LIDC/IDRI dataset(Armato III et al., 2011). We evaluate the robustness of
the following approaches: i) Filtered back projection(FBP) ii) FBP-Unet (Chen et al.,
2017) post-processing FBP outputs, iii) iRadonmap(He et al., 2020), which also learns back
projection in addition to pre-processing, iv) LearnedGD, learned gradient descent v) Learned
Primal Dual(Adler and Öktem, 2018) vi) Total Variation regularization. For the localized
attacks, we obtain the locations of regions of interest corresponding to ground truth from the
LIDC-IDRI dataset. For malignancy classification, we use a BasicResNet model(Al-Shabi
et al., 2019) adversarially trained on nodule patches from LIDC-IDRI dataset. We consider
additive perturbations are L∞ norm bounded by 1%, 2.5% and 5% of the intensity range of
the clean observation. Further experiment details are found in Appendix A. We will make
the code for our experiments publicly available up on acceptance. In the following f , fδ,
û and ûδ denote the clean and adversarial sinogram measurements and the corresponding
recovered CT images respectively.

Performance Metrics: We measure the PSNR, SSIM and the TV Bregman distance of the
reconstructions with clean and adversarial inputs with respect to the ground truth (setting
the corresponding subgradient to zero if the norm of the gradient is below a threshold of
10−5, which we consider to be ’numerically zero’). We also measure data consistency of
the reconstructions with respect to the clean and adversarial sinograms in terms of PSNR.
Further, we empirically compute a lower bound for Lipschitz constant of each method as

Lb(N ) =

(
∥N (fδ)−N (f)∥

∥δ∥

)
max

which is the maximum value obtained across the test set of 100 CT images for the three
adversarial noise levels with 5 random restarts (a total of 1500 examples). For localized
attacks, we additionally compare the PSNR values in the local region, and the region exterior
to it, for reconstructions with clean and adversarial inputs.
Untargeted Attacks: Table 1 and Figure 1 illustrate the results of untargeted attacks (7).
The results demonstrate that in absence of adversarial noise, the neural network approaches
provide qualitatively better reconstructions than FBP and TV minimization. However,
their reconstructions are also more susceptible to adversarial perturbations despite training
with inputs corrupted by Poisson noise. Among the deep learning approaches, the learned
primal-dual network which provides the best reconstructions from clean inputs is also the
most unstable to perturbations, where as the learned gradient descent is more stable. This
is also reflected in the empirical Lipschitz lower bound which is the highest for LearnedPD.
This high sensitivity to adversarial attacks is surprising as LearnedPD also encourages data
consistency in its (fixed number of) iterations. Among the classical methods, FBP and
TV minimization have similar stability in terms of PSNR and Lb, while TV is better in
terms of SSIM and Bregman distance as one would have hoped considering the provable
stability (6). Interestingly, the adversarial perturbations do not heavily affect the data
consistency of the recovered CT images for all the methods. The adversarially affected CT
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Figure 2: Localized attack on CT recovery for ϵ = 0.01. For each method, the third row shows
the cropped patches from the clean (left) and adversarial (right) reconstructions.

Optimized Unseen
FBP FBP-Unet iRadonMap LearnedGD LearnedPD FBP FBP-Unet iRadonMap LearnedGD LearnedPD

Clean 30.37/0.738 35.47/0.837 33.95/0.810 34.55/0.815 35.73/0.843 30.53/0.714 35.67/0.824 34.19/0.799 34.74/ 0.802 35.92/0.829
ϵ = 0.01 22.87/0.340 17.96/0.223 15.58/0.263 18.41/0.542 7.19/0.139 23.27/ 0.337 18.59/0.225 16.29/ 0.262 19.04/0.538 7.93/0.161
ϵ = 0.05 9.87/0.036 4.49/0.023 3.303/0.011 3.80/0.179 -3.71/0.003 10.34/ 0.036 4.95/0.022 3.82/0.0108 4.32/0.183 -2.95/0.003

Table 2: Universal adversarial attack on CT recovery. PSNR/SSIM values for clean samples
and samples affected by additive universal perturbation are shown.

reconstructions from LearnedPD with an extremely low average PSNR (0.36 dB) still have
a good data consistency (28.7 dB) with the input measurement, showing instabilities typical
to unregularized solutions to the recovery problem. Results of similar untargeted attack on
LoDoPAB 200 dataset are provided in Table 6 of the appendix.

Universal Attacks: We perform input-agnostic attack universal attack (9) by optimizing
over a set of 100 samples. Table 2 shows the effect of this adversarial perturbation on the
optimized examples and its generalizability on a different 100 examples not seen during
optimization, indicating that CT recovery methods can also be affected by universal attacks.

Transferability of Adversarial Examples: In context of image classification, adversarial
perturbations are often transferable across different networks (Liu et al., 2017). Even for CT
recovery, we find that the adversarial perturbations and even universal perturbations transfer
across different methods, detailed results are provided in the Tables 4 & 5 of appendix.

Localized Attacks: Table 3 and Figure 2 provide the results of our experiments with
localized attacks (8) on different CT recovery methods. Sample reconstructions from different
methods with clean and adversarial inputs are compared in Figure 2. The results clearly
demonstrate visible alteration in the region of interest ûi indicated by the inner square
marked in the ground truth image. Our attack successfully achieves this modification, barely
affecting the reconstruction in the exterior region ûe.
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Method
û ûi|ûe (Aû, f)

ϵ
ûδ ûδi |ûδe (Aûδ, f) (Aûδ, fδ) (f, fδ) success

PSNR/SSIM PSNR PSNR PSNR/SSIM PSNR PSNR PSNR PSNR rate

FBP 30.86/0.787 31.45|30.86 33.81
0.01 30.60/0.782 22.29|30.83 33.79 33.77 55.09 100
0.025 30.35/0.772 20.93|30.67 33.75 33.42 47.55 100
0.05 29.97/0.751 19.89|30.34 33.70 32.63 41.08 100

TV 32.36/0.829 31.84|32.37 36.52
0.01 32.00/0.825 22.70|32.32 36.48 36.42 54.77 100
0.025 31.62/0.812 21.26|32.07 36.46 35.66 46.97 100
0.05 30.65/0.767 20.28|31.15 36.35 33.59 40.11 100

FBP-Unet 36.94/0.909 35.67|36.95 36.50
0.01 34.85/0.902 19.43|36.61 36.46 36.43 55.11 100
0.025 33.79/0.889 17.82|35.87 36.37 35.84 47.83 100
0.05 33.15/0.877 17.27|35.11 36.11 34.42 41.90 100

iRadonMap 35.25/0.888 34.07|35.27 36.09
0.01 33.70/0.883 18.85|35.12 36.03 36.03 55.32 100
0.025 32.68/0.875 16.53|34.76 35.95 35.52 48.08 100
0.05 30.60/0.808 15.32|32.73 35.55 33.39 40.81 100

LearnedPD 37.22/0.913 35.97|37.23 36.49
0.01 33.15/0.854 18.34|35.08 36.28 36.10 53.74 100
0.025 29.90/0.753 16.15|31.57 35.33 34.57 45.41 100
0.05 25.05/0.559 14.52|25.72 33.29 31.74 38.41 100

LearnedGD 35.80/0.891 34.86|35.82 36.49
0.01 34.86/0.886 22.02|35.71 36.46 36.42 55.29 100
0.025 34.49/0.883 20.98|35.53 36.42 35.99 48.41 100
0.05 34.12/0.875 21.11|35.04 36.28 34.72 42.44 100

Table 3: Comparison of robustness to localized attacks on different CT reconstruction
method evaluated on 100 samples LoDoPAB testset.

Table 3 summarizes our results for localized attacks for three levels of adversarial noise.
The subscripts i and e denote the restriction to the interior and exterior of the local region
to be attacked. Due to masking, the magnitudes of additive perturbation are extremely
small, with high PSNR values between the clean and adversarial inputs for all noise levels.
Still, our attack is almost always successful in producing local degradations that change the
malignancy prediction. This is also reflected in the steep PSNR drop in the local region ûi,
while the PSNR in the exterior region are mostly unaffected. While the classical approaches
are more robust to untargeted attacks, they are also sensitive to local changes. This is a
direct consequence of ill-posedness of the recovery problem, as we observe nearly similar
data consistency of the recovered ûδ with both clean and adversarial inputs. In a recent
work (Dröge et al., 2022) demonstrate that the CT images of varying malignancy level can
be solutions the same measurement with a high data consistency, but by modifying the
reconstruction loss. Our localized attacks also show that the adversarial noise necessary to
change the malignancy is extremely small for a variety of methods and the resulting solutions
demonstrate high data consistency with both clean and adversarial inputs. One could utilize
such attacks beneficially to efficiently explore diagnostically different reconstructions with a
very high degree of data consistency with sinogram. This can be used by a medical doctor
to choose the most plausible reconstruction in making diagnosis.

5. Conclusions

In this work, we analyzed the adversarial robustness of classical and deep learning methods
to CT recovery. We showed that deep learning methods are more sensitive to untargeted
adversarial examples than the classical approaches. Even model inspired unrolled networks
are susceptible to adversarial examples, even though they encourage data consistency within
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the network. While the quality of the recovered CT images degrades, we find that the
recovered images still exhibit a good degree of data consistency. This motivates the need to
improve robustness of deep networks for CT recovery via better regularization techniques or
via adversarial training. Further, we demonstrated the susceptibility of CT recovery methods
to universal attacks, and showed that perturbations can transfer across different methods.
We also find that the classical methods and deep learning methods are similarly affected by
adversarial examples targeting small localized regions. Moreover, such attacks are successful
for extremely small perturbations already, such that the resulting reconstructions have high
data consistency with original measurements. Therefore, the proposed localized attacks
could serve as a way to explore the solution space of reconstruction networks.
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Appendix A. Experiment Details

In our experiments we analyzed the robustness of the following methods: i) Filtered
back projection(FBP) ii) FBP-Unet (Chen et al., 2017), iii) iRadonmap(He et al., 2020),
iv) LearnedGD, v) Learned Primal Dual(Adler and Öktem, 2018) vi) Total Variation
regularization. For the learned methods ii)-v), we use the pretrained models1 from (Baguer
et al., 2020) trained on the full training set excluding iRadonmap (which we trained ourselves
to full convergence). For FBP, we employ the Hann filter with low-pass cut-off of 0.6410, the
best setting for this dataset in (Baguer et al., 2020). When attacking FBP-Unet Equation (4),
we also backpropagate through B†(·). For TV minimization, we used 500 gradient descent
steps, with a TV weight of 1e-3, and the attack backpropagates through all the gradient
descent steps. For the localized attacks, we obtain the locations of regions of interest
corresponding to ground truth from the LIDC-IDRI dataset (Armato III et al., 2011). We
exclude the images where the patch surrounding the nodule does not lie fully with in the
central cropped region of LoDoPAB dataset. For malignancy classification, we consider
a BasicResNet model(Al-Shabi et al., 2019) trained on nodule patches from LIDC-IDRI
dataset. We utilize the adversarially trained model from (Dröge et al., 2022).

Untargeted Attacks: We perform untargeted attacks (Equation (7)) using step size of
1e− 3 and 20 PGD steps and choose the best adversarial noise from 5 random restarts.

Universal Attacks: We perform universal attack (9) on each method by optimizing a
single L∞ norm constrained untargeted adversarial perturbation for hundred examples using
step size of 1e− 3 with PGD steps for 500 epochs.

Localized Attacks: We perform adversarial attacks effecting localized changes Equation (8)

1. https://github.com/oterobaguer/dip-ct-benchmark
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Source Noise FBP FBP-Unet iRadonMap LearnedGD LearnedPD

Clean 30.37/0.738 35.47/0.837 33.94/0.810 34.55/0.815 35.73/0.842
FBP 18.68/0.194 16.19/0.139 15.41/0.131 16.04/0.138 16.19/0.151

FBP-Unet 22.03/0.325 12.19/0.095 16.33/0.173 17.98/0.279 14.10/0.125
iRadonMap 20.72/0.284 15.18/0.152 10.86/0.084 15.45/0.197 16.01/0.171
LearnedGD 21.17/0.375 15.42/0.275 15.96/0.271 13.90/0.290 15.28/0.241
LearnedPD 26.39/0.553 25.33/0.604 26.19/0.590 26.23/0.603 3.38/0.030

TV 19.19/0.365 16.94/0.289 16.78/0.305 16.66/0.280 16.75/0.333

Table 4: Evaluating transferability of adversarial noises for ϵ=0.025

using step size of 1e− 3 and iterate for a maximum of 50 PGD steps till the local patch is
misclassified. We choose the best adversarial noise from 5 random restarts.

Appendix B. Transferability of Adversarial Examples

Transferability of adversarial examples is studied in context of image classification net-
works, to examine the possibility of black box attacks. We investigate the transferability
of adversarial examples across different CT recovery methods, i.e. we test whether, an
adversarial example crafted for a “source” CT recovery method also reduces the quality of
reconstruction of a different target method for CT recovery. Table 4 summarizes the results
of transferability for CT recovery methods, for ϵ value of 0.025. The results demonstrate that
the adversarial examples are indeed transferable across different methods to some extent.
The adversarial examples for classical methods FBP and TV are highly transferrable across
methods significantly reducing the reconstruction quality. The adversarial examples of neural
network methods FBP-Unet, iRadonMap and LearnedGD are also transferrable to other
network based approaches. The adversarial examples of LearnedPD are least transferable to
other methods.

In addition to input specific adversarial examples, we also study the transferability
of input-agnostic universal perturbations across different CT recovery methods. Table 5
summarizes the results of such transferability test for ϵ value of 0.05. The results indicate
that even universal adversarial perturbations are transferable across different methods. This
indicates the possibility of crafting fully black box attacks on CT recovery. The universal
perturbation optimized for FBP is the most transferable to other methods, on the other
hand universal perturbation optimized for LearnedPD is least transferable to other methods.

Source Noise FBP FBP-Unet iRadonMap LearnedGD LearnedPD

Clean 30.53/0.714 35.67/0.824 34.19/0.799 34.74/ 0.802 35.92/0.829
FBP 10.34/0.036 9.90/0.031 8.74/0.025 7.68/0.021 10.62/0.041

FBP-Unet 14.42/0.098 4.95/0.022 9.06/0.035 9.26/ 0.095 7.77/0.042
iRadonMap 13.02/0.0706 9.61/0.049 3.82/0.0108 7.38/0.042 10.99/0.057
LearnedGD 15.60/0.188 13.52/0.220 10.38/0.112 4.32/0.183 9.69/0.109
LearnedPD 23.07/0.358 21.42/0.444 19.45/0.232 23.54/0.453 -2.95/0.003

Table 5: Evaluating transferability of universal adversarial noises for ϵ=0.05.
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Method
û (Aû, f)

ϵ
ûδ (Aûδ, f) (Aûδ, fδ) (f, fδ) ∥δ∥2 Lb

PSNR/SSIM PSNR PSNR/SSIM PSNR PSNR PSNR Empir

FBP 28.38/0.649 34.14
0.01 25.26/0.465 33.69 33.69 40.03 0.093

29.690.025 19.77/0.233 31.84 31.75 32.09 0.581
0.05 14.36/0.096 28.78 28.52 26.12 2.292

TV 28.94/0.652 37.47
0.01 24.88/0.520 36.58 36.54 40.10 0.092

33.980.025 18.91/0.302 33.32 33.74 32.20 0.565
0.05 13.72/0.126 29.13 30.16 26.33 2.177

FBP-Unet 33.55/0.799 36.50
0.01 19.37/0.384 34.52 35.244 40.14 0.091

97.560.025 12.82/0.115 28.33 29.23 32.31 0.551
0.05 8.38/0.036 23.26 23.97 26.52 2.074

iRadonMap 32.39/0.778 36.3
0.01 18.46/0.546 30.22 30.58 40.08 0.092

125.210.025 9.40/0.231 19.55 19.88 32.27 0.554
0.05 5.39/0.051 14.92 15.12 26.65 2.01

LearnedPD 33.64/0.802 36.50
0.01 17.75/0.412 34.23 34.92 40.11 0.092

108.480.025 10.56/0.153 31.26 33.08 32.34 0.548
0.05 5.94/0.053 31.91 33.66 26.57 2.047

LearnedGD 32.49/0.776 36.46
0.01 22.44/0.583 35.41 35.67 40.35 0.086

61.950.025 15.66/0.418 32.09 33.01 32.72 0.499
0.05 10.89/0.301 29.10 30.02 27.19 1.773

Table 6: Comparison of robustness to untargeted attacks on different CT reconstruction
methods using 20 attack iterations on 100 samples LoDoPAB200 testset.

Appendix C. Additional Results

Untargeted Attacks on LoDoPAB 200 Table 6 summarizes the results of our untar-
geted attacks on LoDoPAB 200 dataset, where the measurements are generating using 200
projection beams. Similar to our results on the LoDoPAB dataset, we find that classical
approaches are more robust to untargeted attacks. However, on this dataset, the fully
learned approach of iRadon Map is the most unstable method, followed by LearnedPD.
LearnedGD is stable among the network based methods. Further, the methods show a
trend of have a higher value of Lb on LoDoPAB 200 dataset in comparison with LoDoPAB
dataset indicating higher instabilities as the reconstruction from 200 projection beams is
more severely ill-posed than from 513 projections.

Qualitative Results Figure 3 shows the results of untargeted attack on two example
CT images for three adversarial noise levels. The clean and adversarial reconstructions
for the methods are shown. The visual results also indicate relative robustness of classical
approaches to untargeted attacks.

Figure 4 shows result of localized attack on an example CT image for adversarial noise
level of 0.01. The adversarial noise that produces the localized changes is also depicted.
We can observe that the attack successfully modifies the local region using extremely low
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Figure 3: Untargeted attack on CT reconstruction methods for ϵ values 0.01, 0.025 and 0.05.

noise level. Figure 5 shows the results of localized attacks on 20 example CT images in
LoDoPAB test set. For each method, the local patches extracted from clean and adversarial
reconstructions are shown.

16



Adversarial Robustness Low dose CT

C
le
a
n

ϵ
=

0
.0
1

A
d
v
er
sa
ri
a
l
n
o
is
e

GT FBP TV FBP-Unet iRadonMap Learned PD LearnedGD

Figure 4: Localized attack on CT reconstruction methods. for ϵ = 0.01. First and second
row illustrate clean and adversarial reconstructions for each method. The third
row shows the cropped patches from the clean (left) and adversarial (right)
reconstructions. Adversarial noise in the fourth row is multiplied by ×25 for
visibility.
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Figure 5: Result of localized attacks on 20 images. For each method left patch is from clean
reconstruction and right is the result of attack.
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