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Figure 1: Raw point cloud sequences (left) are unstructured and lack temporal correspondences. We propose Preconditioned Deformation
Grids (right), a method for temporally coherent, high-fidelity surface reconstructions that evolve smoothly over time.

Abstract
Dynamic surface reconstruction of objects from point cloud sequences is a challenging field in computer graphics. Existing
approaches either require multiple regularization terms or extensive training data which, however, lead to compromises in
reconstruction accuracy as well as over-smoothing or poor generalization to unseen objects and motions. To address these lim-
itations, we introduce Preconditioned Deformation Grids, a novel technique for estimating coherent deformation fields directly
from unstructured point cloud sequences without requiring or forming explicit correspondences. Key to our approach is the use
of multi-resolution voxel grids that capture the overall motion at varying spatial scales, enabling a more flexible deformation
representation. In conjunction with incorporating grid-based Sobolev preconditioning into gradient-based optimization, we
show that applying a Chamfer loss between the input point clouds as well as to an evolving template mesh is sufficient to obtain
accurate deformations. To ensure temporal consistency along the object surface, we include a weak isometry loss on mesh edges
which complements the main objective without constraining deformation fidelity. Extensive evaluations demonstrate that our
method achieves superior results, particularly for long sequences, compared to state-of-the-art techniques.

CCS Concepts
• Computing methodologies → Reconstruction; Mesh models;

1. Introduction

Reconstructing dynamic 3D surfaces from temporal point cloud se-
quences is a fundamental problem in computer graphics with di-
verse applications in animation, virtual production, medical imag-
ing, robotics, autonomous driving, as well as augmented reality
(AR) and virtual reality (VR). The increasing availability of com-
modity depth sensing, ranging from smartphone LiDAR to multi-
camera RGB systems, has made it feasible to capture dense 3D
point clouds at video rates. However, these point clouds are typ-

ically unstructured, lack temporal correspondences, and exhibit
noise or incompleteness, posing significant challenges for reli-
able surface reconstruction. Naively applying static reconstruction
methods [HGA∗23, PJL∗21, HMGCO20, WSS∗19] to each frame
independently fails to exploit temporal coherence, often resulting
in inconsistent geometry, lost correspondences, and high computa-
tional cost. Thus, dynamic reconstruction methods aim to estimate
a consistent 3D surface for a reference frame and deform it to match
subsequent points measurements across time. Yet, this problem is
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inherently under-constrained, and in the absence of strong tempo-
ral cues, deformation fields may overfit the data while producing
implausible motion.

To mitigate these issues, previous approaches incorporate tempo-
ral priors to enforce continuity across frames. Template-based mod-
els such as SMPL [LMR∗15] and SCAPE [ASK∗05] encode cor-
respondences via parametric shape spaces, while alternative meth-
ods estimate inter-frame deformations through learning-based or
optimization-driven techniques [BPZ∗21, LD22]. Although effec-
tive in specific domains, these approaches often rely on category-
specific assumptions or extensive training data, limiting their ability
to generalize to unseen object classes or non-rigid, unpredictable
motions. In addition, many methods employ strong regularization
to stabilize reconstructions and enforce smoothness which often
comes at the cost of geometric detail [WLLY19, YGL∗19]. This
trade-off between fidelity and stability can undermine subtle but
meaningful surface variations, motivating the need for more flex-
ible formulations. To overcome these limitations, it is essential
to develop a framework that jointly exploits temporal coherence
without relying on restrictive priors, while still preserving high-
frequency details across challenging dynamic sequences.

In this work, we introduce Preconditioned Deformation Grids,
a correspondence-free, training-free framework for reconstructing
temporally coherent, high-fidelity surfaces directly from unstruc-
tured point cloud sequences. Our method begins by selecting a
suitable keyframe to estimate an initial deformable template mesh,
which is further refined as part of the optimization process. Rather
than relying on explicit correspondences or a set of carefully hand-
tuned regularization terms, our approach employs Sobolev precon-
ditioning, which spatially diffuses the under-constrained gradient
information from the raw point clouds across local neighborhoods.
This effectively acts as a spatially adaptive smoothness constraint,
allowing the optimization to prioritize plausible deformations with-
out explicitly imposing any restrictions to the reconstruction fi-
delity. To further guide the process, we represent the overall motion
at various spatial scales using multi-resolution voxel grids. Coarser
grid levels represent broad movements and thus help maintain tem-
poral coherence over long sequences, while finer levels enable the
recovery of high-frequency surface details by allowing localized
adjustments. Thanks to the stabilizing effect of Sobolev precondi-
tioning and the multi-scale representation of the deformation field,
a simple Chamfer loss defined on the unstructured input point cloud
together with a weak isometry loss on the edges of the evolving
template mesh is sufficient to achieve superior results over current
state-of-the-art approaches.

In summary, our main contributions are:

• A correspondence-free deformation framework that operates di-
rectly on unstructured point clouds, eliminating the need for pre-
defined template models or category-specific priors, and enables
robust, large-scale motion estimation for arbitrary objects.

• A multi-resolution voxel grid representation for the deformation
field that models the motion at varying scales.

• A grid-based Sobolev preconditioning scheme that stabilizes
the optimization by diffusing under-constrained gradients across
neighboring grid cells.

The code of our work is available at https://github.com/
vc-bonn/preconditioned-deformation-grids.

2. Related Work

2.1. Parametric Template Models

A widely adopted strategy for category-specific 3D reconstruc-
tion involves deforming a predefined mesh template to align with
observed data. In facial reconstruction, the FLAME [LBB∗17]
and FaceVerse [WCY∗22] models define parametric spaces over
shape and expression. For full-body reconstruction, approaches
like SMPL [LMR∗15], SMPL-X [PCG∗19], SCAPE [ASK∗05], as
well as the more recent GHUM/GHUML [XBZ∗20] similarly en-
code pose and identity within low-dimensional manifolds and use
corrective blend shapes and linear blend skinning to deform the
template. These models have been successfully applied to detailed
human performance capture from real-world recordings [BKL∗16,
SBFB19, LHR∗21], and further extended to incorporate clothing
and apparel variations [BTTPM19, AMB∗19, TBTPM20].

While template-based approaches offer compact, interpretable
control over shape and articulation, they are fundamentally limited
by the expressiveness of the underlying parametric model, which
can restrict generalization to novel shapes, poses, or deformable
objects outside the training distribution.

2.2. Deformation Field Estimation

Estimating non-rigid motion from image or point cloud data
is commonly addressed through either optimization-based or
learning-based methods that solve for deformation fields. Early
optimization-driven techniques model deformation directly from
input data. Deformation graphs, introduced by Sumner et
al. [SSP07], provide a sparse and flexible representation for surface
motion. This concept was extended in DynamicFusion [NFS15],
which estimates a volumetric 6D warp field to incrementally align a
canonical surface with each new input frame. Recently, the success
of 3D Gaussian Splatting (3DGS) [KKLD23] in efficiently repre-
senting and rendering radiance fields led to further advances in dy-
namic reconstruction. For instance, 4DTAM [MBD25] performed
online 4D tracking and mapping from a single RGB-D stream using
dynamic surface Gaussians, jointly optimizing geometry, appear-
ance, camera ego-motion, and a learned warp field. Other Gaussian-
Splatting–based dynamic SLAM systems distinguished between
static and dynamic scene content, either by separating them into
individual Gaussian maps [LSS∗25] or by predicting uncertainty
images for guiding rigid bundle andjustment [ZZB∗25].

More recently, learning-based methods have gained traction.
Neural Deformation Graphs [BPZ∗21] and Neural Non-Rigid
Tracking [BPZ∗20] learn non-rigid motion by estimating point cor-
respondences and deformation fields through neural networks. Hi-
erarchical models such as Neural Deformation Pyramid [LH22]
represent motion at multiple spatial scales, where each level is han-
dled by a lightweight MLP. An alternative line of work formu-
lates deformation as a learned, continuous spatio-temporal vector
field [NMOG19], integrated via Neural ODE solvers [CRBD18],
or using them to update latent codes that control global shapes

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://github.com/vc-bonn/preconditioned-deformation-grids
https://github.com/vc-bonn/preconditioned-deformation-grids


J. Kaltheuner & A. Oebel & H. Droege & P. Stotko & R. Klein / Preconditioned Deformation Grids 3 of 12

[JZW∗21] or for mesh deformations [HJL∗20], whereas other ap-
proaches [TXJZ21] predict deformations directly. Complemen-
tary to these vector-field formulations, Dynamic Neural Sur-
faces [NLW∗25] represent deforming 4D shapes as continuous
elastic surfaces in space–time, enabling spatio-temporal registra-
tion and statistical analysis for genus-zero surfaces. Recent genera-
tive approaches further explore probabilistic modeling of deforma-
tion. Motion2VecSets [CLZ∗24] employs a 4D diffusion model to
learn distributions over shapes and their deformations. Other meth-
ods aim to jointly learn a canonical shape and its deformation map-
pings, either via latent embeddings [LD22,YTB∗21] or within vol-
umetric rendering frameworks [PCPMMN21, PSB∗21, LNSW21],
where deformation is optimized alongside radiance fields. In con-
trast to models that rely on shape priors, DynoSurf [YRH∗24] in-
troduces an unsupervised method that jointly estimates a deforming
surface and template geometry directly from point cloud sequences.

In the same spirit, our method operates in a category-agnostic,
training-free regime, estimating deformation fields without relying
on strong priors, supervision, or correspondence annotations.

2.3. Preconditioning

Preconditioning is a classical strategy in inverse problems used
to accelerate convergence and enhance optimization stability by
carefully adapting update steps. In geometry processing, precon-
ditioners have been employed to improve mesh parameteriza-
tion [CBSS17] and accelerate mesh deformation [KGL16]. Krishna
et al. [KFS13] demonstrate the effectiveness of multi-level pre-
conditioning on Laplacian matrices, showing broad applicability
across mesh-based tasks. Despite these advances, ill-conditioned
optimization problems remain a challenge in high-dimensional and
irregular domains. Recent works explore learning-based alterna-
tives, using graph neural networks to learn effective preconditioners
from data [RFM∗24, LCDM23, Che25, HÖS24, TRI∗24].

A particularly relevant technique in this context is Sobolev pre-
conditioning, which replaces the standard L2 inner product with
a Sobolev (e.g., H1) inner product to compute smoother gradient
directions [Neu85]. Sobolev gradient methods have been widely
studied for applications in surface smoothing and minimal sur-
face flows [Ren04, RN95, EPT∗07]. Martin et al. [MJBC13] fur-
ther demonstrated the benefits of Sobolev preconditioners in the
area of geometry processing and optimized shapes for smooth sur-
faces.The technique has since been applied to non-rigid scene re-
construction from RGB-D data [SBI18], differentiable rendering
pipelines [NJJ21], and registration of deforming objects [JKYL25].
Recently, Chang et al. [CYB∗24] proposed a variant that uses spa-
tiotemporal bilateral gradient filtering, which diffuses gradient in-
formation for stability while preserving high-frequency details.

In this work, we adopt a grid-based Sobolev preconditioning
scheme to regularize gradient updates from unstructured point
cloud sequences, promoting smooth yet flexible deformation fields
that improve spatial coherence without sacrificing geometric detail.

3. Method

We present an optimization-based method for estimating dense sur-
face deformations from unstructured point cloud sequences, with-

out relying on temporal correspondences, learned priors, or pre-
training. Given a sequence of point clouds {Pt}T

t=0, where each
Pt = {pppi,t ∈ R3}, and an initial mesh X0 = {xxxi,0 ∈ R3} defined
at a keyframe (see Sec. 3.5), our goal is to estimate a sequence
of deformation fields that, when applied to X0, yield temporally
consistent surface reconstructions {X̂t}T

t=1. As illustrated in Fig. 2,
we represent the deformation field as a multi-resolution voxel grid
which encodes local rigid transformations at different spatial scales
(see Sec. 3.1). A key technical contribution is a spatially-aware pre-
conditioning scheme (see Sec. 3.2) that stabilizes the optimization
by enforcing spatial smoothness in the deformation field.

3.1. Multi-Resolution Transformation Grid

To enable the estimation of temporally coherent deformations, we
represent the motion from time step t − 1 to t at different spatial
scales using a multi-resolution voxel grid Gt = {Gl

t}L
l=1 composed

of L hierarchical levels. Each level Gl consists of a finite set of grid
cells Cl ⊆ {c ∈ [0 : 2l−1)3}, where each cell c stores a 6D trans-
formation vector TTT l,c

t ∈ R6, parameterizing a local rigid motion via
rotation and translation (see Sec. 3.3). In particular, the spatial res-
olution of the grid increases linearly by 2l− 1 with level index l,
ranging a coarse global deformation at l = 1 to fine-scale local dis-
placements at the finest level L = 10. For an input point xxx ∈ R3, the
corresponding transformation T̂TT t(xxx) ∈ R6 is computed by aggre-
gating the trilinear-interpolated partial transformations TTT l,c

t from
neighboring cells c ∈N l

t (xxx) across all resolution levels l:

T̂TT t(xxx) =
1
L

L

∑
l=1

∑
c∈N l

t (xxx)
wl,c

t (xxx) ·TTT l,c
t , (1)

where wl,c
t are the trilinear interpolation weights. Our approach

constructs the deformation field using a redundant, multi-scale rep-
resentation, achieved by explicitly averaging transformations de-
rived from parameters at each resolution level. This design allows
parameters at each level to model aspects of the absolute deforma-
tion relevant to their respective scale, rather than encoding explicit
residuals of coarser levels. The inherent redundancy in an averaged
representation is crucial for enhancing optimization stability, as it
provides robustness against the high-frequency variations and esti-
mation sensitivities often encountered when learning direct residu-
als, which can be challenging even for preconditioned solvers.

3.2. Spatial Smoothness via Grid Preconditioning

Real-world deformations exhibit strong spatial coherence: neigh-
boring regions typically undergo similar transformations. In the
absence of regularization, the deformation estimation problem is
severely under-constrained since the input points Pt provide only
sparse observations, allowing many plausible interpolated deforma-
tions between observed points. Naively optimizing transformations
for each voxel independently can result in folding, tearing, or dis-
continuous motion fields that violate physical plausibility.

To address this, rather than imposing spatial coherence through
an explicit penalty term, we incorporate smoothness directly into
the optimization dynamics via preconditioning. Let TTT l denote the
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Figure 2: Overview of our correspondence-free deformation framework. At the heart of our approach is a multi-resolution voxel grid Gt
that encodes 6D transformations at multiple spatial scales l. Given a sequence of unstructured point clouds Pt and an estimated initial
template mesh X0, we apply grid-based preconditioning to diffuse the under-constrained gradient information during optimization of the
transformations TTT l,c

t within the grid.

stacked transformation parameters for all grid cells at resolution
level l. A standard gradient descent update is given by:

TTT l ← TTT l−η
∂L
∂TTT l , (2)

where η is the learning rate and L the loss function. Instead, we
apply spatially-aware preconditioning [NJJ21] that couples updates
between neighboring grid cells:

TTT l ← TTT l−η(I+λLLLl)−2 ∂L
∂TTT l , (3)

where LLLl is the Laplacian matrix encoding adjacency between
neighboring grid cells, and λ > 0 controls the strength of spatial
smoothing. This corresponds to a heat diffusion process on the grid
where, in this case, gradients between neighboring cells are con-
tinuously smoothed over time and λ determines the time scale of
diffusion and thus the degree of smoothing.

This preconditioning approach offers several advantages over
traditional energy-based regularization, as 1) the elimination of the
accuracy tradeoff inherent in explicit regularization formulations,
allowing the transformations to fit the data while still enforcing
smoothness. By embedding smoothness in the optimization trajec-
tory (rather than the final objective) serves as 2) adaptive regular-
ization and preserves the ability to represent non-smooth deforma-
tions, such as sharp boundaries, whenever the data demand them.
Furthermore, in under-determined problems, where multiple solu-
tions exist that fit the data equally well, the optimization naturally
leads toward 3) smooth solutions, thereby resolving ambiguities in
a principled manner. Additionally, it improves 4) numerical sta-
bility by dampening high-frequency oscillations, leading to more
robust convergence compared to standard gradient descent. Finally,

because the grid topology is fixed, the Laplacian matrix LLLl can be
precomputed once, and its sparse structure exploited by standard
linear solvers, leading to 5) an efficient computation.

Note that we apply preconditioning not only to our grids, but also
to the optimization of the mesh verticesX0 (see Sec. 3.4), following
the mesh preconditioning strategy by Nicolet et al. [NJJ21].

3.3. Transformation Parameterization

As mentioned in Sec. 3.1, each grid cell encodes a 6D transforma-
tion vector:

TTT l,c
t = [zzzT , tttT ]T (4)

where zzz = (z0,z1,z2)
T ∈ R3 parameterizes the rotation component

and ttt = (tx, ty, tz)T ∈ R3 specifies the translation component. To
avoid issues such as gimbal lock and to ensure robust optimization,
we adopt the Cayley parameterization [ZJA21] to express rotations.
Specifically, the rotation matrix RRR ∈ R3×3 is defined as:

RRR(zzz) = (I+ZZZ)(I−ZZZ)−1 (5)

where ZZZ is the skew-symmetric matrix constructed from zzz:

ZZZ =

 0 −z2 z1
z2 0 −z0
−z1 z0 0

 (6)

The full transformation at a point is represented by a 4×4 homoge-
neous matrix, composed of the interpolated rotation RRR(zzz) and trans-
lation ttt:

MMM(T̂TT t(ppp)) =
[

RRR(zzz) ttt
000T 1

]
(7)
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To estimate the deformed surface X̂t at time t, we apply the esti-
mated transformations recursively from t = 0 up to the current step
to the initial mesh X0:

X̂t =

{
x̂xxt ∈ R3

∣∣∣∣∣ x̂xxt =
t

∏
τ=1

MMM(T̂TT τ(xxxτ−1)) · xxx0

}
(8)

For brevity, we omit the explicit conversion to and from homoge-
neous coordinates.

While the formulation above propagates transformations for-
ward in time, that is from X̂t−1 to X̂t , the same mechanism can
be applied in reverse. This allows more a flexible starting point by
selecting a suitable keyframe for X0 at any time step t > 0 of the
input point cloud sequence (see Sec. 3.5).

3.4. Optimization Objectives

Our method jointly optimizes the initial surface mesh X0 and the
multi-resolution transformation grids {TTT l,c

t } by minimizing:

L= Lmesh +Ltransform +wisometry ·Lisometry, (9)

where wisometry = 250 controls the contribution of the isometry loss
Lisometry. This value is chosen such that the isometry loss con-
tributes only weakly, accounting for approximately 25% of the typ-
ical magnitude of the transformation loss Ltransform.

Surface Initialization Loss. To ensure accurate surface geometry
at the keyframe, we align the initially estimated meshX0 to the cor-
responding reference point cloudP0 by minimizing a robust variant
of the Chamfer distance:

Lmesh = CDR(X0,P0), (10)

where CDR denotes the robust Chamfer distance [YRH∗24], which
is designed to reduce sensitivity to outliers:

CDR(P,Q) =
1
|P| ∑

ppp∈P
wR(ppp,qqqppp)

∥∥∥ppp−qqqppp

∥∥∥2

+
1
|Q| ∑

qqq∈Q
wR(pppqqq,qqq)

∥∥∥pppqqq−qqq
∥∥∥2

(11)

where

qqqppp = argmin
qqq∈Q

∥ppp−qqq∥ , pppqqq = argmin
ppp∈P

∥ppp−qqq∥ (12)

are the nearest neighbors of the points ppp and qqq in the opposite point
setsQ and P , and

wR(ppp,qqq) = exp(−α · ∥ppp−qqq∥2) (13)

is a robust weighting function wR(ppp,qqq) defined as a Gaussian ker-
nel with α = 5.56. This formulation attenuates the influence of
outliers by down-weighting correspondences with large residuals,
thereby enhancing the robustness of the surface alignment.

Transformation Fitting Loss. The primary data fitting objective
encourages correct alignment between the transformed surface and
the target point clouds:

Ltransform =
1
T

T

∑
t=1

wconfidence(t) ·CDR(X̂t ,Pt)+CDR(P̂t ,Pt),

(14)

Figure 3: Effect of the complementary isometry loss Lisometry
on the per-edge displacements. Without Lisometry (left), the sur-
face is faithfully deformed but exhibits larger tangential deforma-
tions. When Lisometry is applied (right), the deformations become
smoother and more temporally coherent, which also leads to im-
proved Chamfer distances (CD) [×10−5].

where P̂t denotes the input pointsPt−1 from time t−1 transformed
forward by the transformation grid Gt , and wconfidence(t) is an adap-
tive confidence weight. This formulation leverages the grid struc-
ture to gather information from the input points at all timesteps,
thereby guiding the mesh transformation process and enabling the
estimation of robust, temporally coherent deformations.

Confidence-Based Error Control. Due to the sequential nature of
our deformation model, inaccuracies in early transformations can
propagate through time, forcing subsequent steps to compensate
for accumulated errors. This often leads to increasingly large and
unstable transformations, ultimately degrading reconstruction qual-
ity. To mitigate this, we introduce an adaptive confidence weighting
scheme:

wconfidence(t) =
t

∏
τ=1

(
1

1+max(0,CDR(X̂τ,Pτ)− cdmax)

)δ

, (15)

which down-weights contributions from later frames if accumu-
lated errors in preceding steps remain high. Here, the exponent δ

is a schedule-dependent catch-up factor defined as:

δ = 1−
√

e/emax, (16)

where e denotes the current optimization epoch and emax the to-
tal number of epochs. This ensures that wconfidence(t) gradually in-
creases toward 1 over time, allowing later frames to fully contribute
once earlier deformations become sufficiently accurate, even for
small residual errors over very long sequences. To normalize the
confidence relative to the achievable alignment, we estimate a soft
upper bound on reconstruction accuracy as:

cdmax = max
t∈[1:T ]

CDR(sg(P̂t),Pt), (17)

where sg(·) denotes the stop-gradient operator, which prevents gra-
dients from propagating through this term during backpropagation.
This prevents feedback loops that could otherwise interfere with
the learning of the deformation parameters TTT l,c

t .

© 2025 The Author(s).
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Isometric Regularization. While the surface initialization and
transformation fitting losses yield smooth and stable deformations,
they do not enforce constraints along the mesh surface itself, in-
cluding temporal coherence in these directions. However, in many
real-world scenarios, surface motion is approximately isometric
and thus intrinsic geometric properties such as edge lengths are
typically preserved. To promote such physically plausible behavior,
we introduce an isometry loss that penalizes temporal variations in
edge length (see Fig. 3):

Lisometry =
1

T |E|

T

∑
t=1

∑
(i, j)∈E

∣∣∣∥∥x̂xxi,t − x̂xx j,t
∥∥−∥∥x̂xxi,t−1− x̂xx j,t−1

∥∥∣∣∣,
(18)

where E denotes the set of edges in the reference mesh topology.

3.5. Keyframe Selection

To initialize the optimization with a suitable initial surface, we fol-
low a similar strategy as DynoSurf [YRH∗24] to select a keyframe
as the starting point. Rather than choosing the frame with the lowest
aggregated Chamfer distance to all others, we prioritize selecting
frames that exhibit a well-defined and representative surface topol-
ogy. To this end, we measure the spatial extent of each frame and
select the one with maximal coverage near the temporal midpoint:

tkey = argmax
t∈[0:T ]

wkey
(
t− T

2
)
|G(Pt)|, (19)

where |G(Pt)| denotes the number of occupied voxels in a fixed-
resolution grid G of size 1283. To favor a keyframe near the tempo-
ral center, we apply a Gaussian weighting function:

wkey(t) = exp(−γ t2), γ = 0.001, (20)

which discourages frames at the sequence boundaries, where it
would be necessary to estimate larger overall transformations to
other frames. Once tkey is determined, we reconstruct the initial
mesh X0 via screened Poisson surface reconstruction [KH13] ap-
plied to the corresponding point cloud Ptkey .

3.6. Implementation Details

All input point clouds Pt are normalized to the spatial domain
[−1,1]3 to align with the expected range of our multi-resolution
voxel grid representation. To reduce computational overhead, we
prune the transformation grid by retaining only cells that are ei-
ther directly occupied by input points or fall within a three-cell
neighborhood of occupied regions. This sparsification strategy re-
duces the number of active parameters by over 50%, substantially
lowering memory consumption and accelerating optimization. As
a result, our full pipeline typically requires less than 2 GB of
GPU memory and completes processing a sequence in approxi-
mately 7 minutes on an NVIDIA RTX 4090. For optimization, we
use the Adam optimizer with default hyperparameters (β1 = 0.9,
β2 = 0.999, ϵ= 10−8), combined with a hierarchical learning rate
schedule across grid resolutions. The coarsest grid level (l = 1) is
optimized using a base learning rate η of 5×10−3, which is in-
creased by 10% for each subsequent (finer) level. Similarly, the
preconditioning smoothness weight λ is initialized at 0.25 for the
coarsest level and increased by 50% per level to enforce stronger

Table 1: Quantitative comparison of reconstruction performance
across common animation datasets. Our method consistently
achieves the lowest Chamfer distance and Correspondence Error
as well as the highest Normal Consistency and F-scores, demon-
strating superior accuracy and temporal coherence compared to
baseline methods.

corresp. CD [×10−5] ↓ NC ↑ F-0.5% ↑ F-1% ↑ Corr. ↓

D
FA

U
ST

CaDeX ✗ 3.68 0.941 0.730 0.921 0.539
DynoSurf ✗ 2.13 0.953 0.980 0.992 0.356
M2V ✓ 1.61 0.960 0.877 0.979 0.358
Ours ✗ 0.52 0.957 0.988 0.997 0.355

D
T

4D

CaDeX ✗ 56.51 0.870 0.386 0.652 0.442
DynoSurf ✗ 15.18 0.919 0.773 0.922 0.419
M2V ✓ 7.61 0.944 0.792 0.938 0.425
Ours ✗ 1.53 0.960 0.961 0.994 0.422

A
M

A DynoSurf ✗ 1.01 0.918 0.921 0.992 0.347
Ours ✗ 0.47 0.939 0.985 0.999 0.348

spatial coherence at higher resolutions. The optimization of the
mesh vertices of X0 is also preconditioned, using a fixed learning
rate of 1×10−4 and a smoothness weight of λ = 16.

4. Evaluation

We evaluated our method on three animation datasets encompass-
ing both human and animal motion. Specifically, AMA [VBMP08]
and DFAUST [BRPMB17] comprise diverse human motion se-
quences, while DT4D [LTT∗21] provides animal motions, offering
broader coverage beyond human-centric benchmarks. For compar-
isons to learning-based methods, we adopted the dataset splits of
DynoSurf [YRH∗24], yielding 33 test sequences for AMA, 109 for
DFAUST, and 89 for DT4D. We used the official checkpoints and
code released by each method, without additional fine-tuning, and
restricted the performance evaluations to the datasets each method
was originally trained on for a fair comparison. For DynoSurf, we
report both the published results for general benchmarking and re-
sults from additional experiments and ablations using the official
implementation.

4.1. Comparison to State-of-the-Art

We compare our approach against three state-of-the-art meth-
ods for 4D surface reconstruction from point cloud sequences.
The learning-based baselines CaDeX [LD22] and Motion2VecSets
(M2V) [CLZ∗24] leverage pre-trained models and incorporate
category-specific priors, explicitly distinguishing between human
and animal motion patterns. In contrast, our method and Dyno-
Surf [YRH∗24] are category-agnostic and, thus, do not require pre-
training or semantic priors. Notably, M2V additionally assumes ac-
cess to dense temporal point correspondences, introducing stronger
requirements on input data and thereby relying on significantly
more prior information. Reconstruction quality is evaluated us-
ing ℓ2-Chamfer Distance (CD), which quantifies geometric accu-
racy, and Normal Consistency (NC), which measures the alignment
of surface normals across reconstructions. To assess temporal co-
herence, we report Correspondence Error (Corr.) and compute F-
scores at 0.5% and 1% thresholds to quantify geometric overlap.
All meshes are normalized to a unit bounding box within [0,1]3
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Figure 4: Comparison of visual results for CaDeX, DynoSurf, M2V, and Our method on two motion sequences of the DT4D dataset. Color
maps indicate per-vertex ℓ2-Chamfer distance. Our method achieves the lowest error and best visual fidelity across all frames.

Figure 5: Comparison of visual results for CaDeX, DynoSurf, M2V, and Our method on two motion sequences of the DFAUST dataset. Color
maps indicate per-vertex ℓ2-Chamfer distance. Our method achieves the lowest error and best visual fidelity across all frames.

prior to evaluation. For metric computation, 100000 points are uni-
formly sampled from both the predicted and ground-truth surfaces
at each timestep. Unless otherwise stated, all experiments are per-
formed with 5000 input target points per timestep over a motion se-
quence consisting of 17 timesteps. As summarized in Table 1, our
method consistently outperforms baselines across all metrics and
object categories, despite the absence of category-specific supervi-
sion. Qualitative results, visualized in Figs. 4 and 5, further high-
light the effectiveness of our method, showing Chamfer distance
maps on two DT4D animal sequences and two DFAUST human
sequences, respectively.

Sequence Length Analysis. The accuracy of transformation es-
timation can vary significantly with the motion sequence length.
To analyze this dependency, we evaluated the performance of our

Table 2: Performance across varying sequence lengths T on the
AMA dataset. Our method remains robust as the length increases,
while DynoSurf exhibits significant performance degradation.

T CD [×10−5 ] ↓ NC ↑ F-0.5% ↑ F-1% ↑

10
DynoSurf 0.80 0.919 0.943 0.996
Ours 0.55 0.928 0.980 0.999

20
DynoSurf 2.22 0.886 0.809 0.961
Ours 0.54 0.928 0.979 0.999

40
DynoSurf 4.64 0.857 0.686 0.902
Ours 0.66 0.923 0.971 0.999

60
DynoSurf 14.64 0.778 0.474 0.743
Ours 0.72 0.919 0.960 0.997

80
DynoSurf 16.32 0.759 0.431 0.700
Ours 1.35 0.906 0.931 0.990
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Figure 6: Comparison of CaDeX, DynoSurf, and Our method on the AMA dataset across motion sequences of increasing length, all beginning
from the same initial pose. The final frame of each sequence is shown, with reconstruction error visualized as ℓ2-Chamfer distance, clamped
to the range [10−5,10−4]. Our method consistently maintains lower error over time, demonstrating robustness to sequence length.

method across sequences of varying lengths and compared it to al-
ternative approaches that do not employ correlation-based mech-
anisms. This study is conducted on the AMA [VBMP08] dataset,
which features complex, long-range human motions well-suited for
assessing temporal robustness. For the analysis, the sequences are
partitioned into fixed lengths of 10, 20, 40, 60, and 80 time frames.
As shown in Fig. 6 and Table 2, we visualize the reconstructions
at the final timestep of each segment, illustrating our method’s ca-
pability to capture extended temporal deformations with high ac-
curacy. For longer sequences, we proportionally increase the num-
ber of optimization steps up to 10000 to account for our method’s
frame-by-frame optimization strategy described in Sec. 3.3.

4.2. Ablation Study

To assess the contribution of each component in our pipeline,
we conducted a series of ablation studies on the test split of the
AMA [VBMP08] dataset. In particular, we examined the method’s
sensitivity to input noise, the effect of varying the number of lev-
els in the multi-resolution grid, and the impact of key components
like smoothness preconditioning and the isometry loss. These stud-
ies offer insights into how specific design choices influence recon-
struction accuracy, robustness to noise, and optimization stability.

Point Cloud Resolution. For methods that do not leverage pre-
trained knowledge of the transformed surfaces, the resolution of
the target point clouds plays a critical role in reconstruction perfor-

Table 3: Performance at varying point cloud resolutions. Our
method consistently improves with higher input densities, while
DynoSurf shows limited scalability.

|Pt | CD [×10−5] ↓ NC ↑ F-0.5% ↑ F-1% ↑

2500
DynoSurf 1.56 0.896 0.862 0.981
Ours 0.79 0.922 0.948 0.997

5000
DynoSurf 1.01 0.918 0.921 0.992
Ours 0.47 0.939 0.985 0.999

10000
DynoSurf 1.28 0.906 0.897 0.986
Ours 0.40 0.950 0.993 0.999

20000
DynoSurf 1.45 0.902 0.887 0.982
Ours 0.37 0.959 0.996 0.999

mance. Increasing the number of target points can also help expose
the performance ceiling of such approaches. To investigate this, we
evaluated each method using target point clouds ranging from 2500
to 20000 points. As shown in Table 3, our method scales effectively
with resolution, while alternative methods exhibit early saturation
in performance at lower resolutions. In addition, surface normals
and object-specific normal consistency for the reconstructed ge-
ometries are visualized in Fig. 7.

Key Components. We conducted an ablation study to evaluate the
contributions of three key components of our grid optimization: the
multi-resolution grid structure, smoothness preconditioning of the
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Figure 7: Effect of point cloud resolution on reconstruction quality. Our method remains robust across varying numbers of input points,
maintaining high accuracy even at lower resolutions.

Table 4: Ablation on key components of our method. When the
multi-resolution voxel grid is disabled, only the finest resolution
level is used. Additionally, in the absence of preconditioning, the
learning rate of the grid is reduced to 10%. Results show that the
multi-resolution grid alone yields the largest gain in Chamfer dis-
tance, while preconditioning improves F-scores and normal con-
sistency. The full model achieves the best overall performance.

Smooth. Prec. Multi-Res. Isometry CD [×10−5] ↓ NC ↑ F-0.5% ↑ F-1% ↑

- - - 9 ×105 0.796 0.720 0.791
- - ✓ 3×102 0.901 0.929 0.967
- ✓ - 0.69 0.910 0.960 0.997
- ✓ ✓ 4.39 0.913 0.958 0.991
✓ - - 2.54 0.901 0.950 0.991
✓ - ✓ 4.37 0.913 0.958 0.991
✓ ✓ - 0.67 0.933 0.978 0.998
✓ ✓ ✓ 0.47 0.939 0.985 0.999

grid cells, and the isometry loss. To ensure a fair comparison, we
reduced the grid learning rate to 10% of its original value when
smoothness preconditioning is disabled, as this component is essen-
tial for stable optimization at higher step sizes. As shown in Table 4,
only enabling the multi-resolution grid already leads to the most
substantial performance improvement as it allows to model defor-
mations across multiple spatial scales. Adding smoothness precon-
ditioning further enhances reconstruction quality by encouraging
stable, coherent transformation updates during optimization. Its im-
pact is most apparent when combined with the multi-resolution
grid, particularly in the surface metrics, normal consistency and
F-scores, by promoting smooth motion of neighboring regions and
thereby improving surface reconstruction quality. While the isom-
etry loss contributes less in terms of quantitative metrics, it plays
an important role in constraining local surface distortions and pre-
serving temporal consistency, particularly in near-static or under-
constrained regions.

Noise. We evaluated the robustness of our method to input noise
by adding Gaussian noise to the point clouds. The noise magnitude
is chosen based on the bounding box diagonal of the input point
cloud, with levels set to 0.25%, 0.5%, 1%, and 2%. As shown in
Table 5, our method maintains high reconstruction quality under
moderate noise, despite not employing any explicit denoising strat-

Table 5: Reconstruction performance under varying levels of
Gaussian noise added to the input point clouds. The noise mag-
nitude is expressed as a percentage of the bounding box diagonal.
Results demonstrate our method’s robustness, with stable recon-
struction quality observed across moderate noise levels.

Noise CD [×10−5 ] ↓ NC ↑ F-0.5% ↑ F-1% ↑

0% 0.47 0.939 0.985 0.999
0.25% 0.76 0.912 0.958 0.998
0.5% 1.25 0.865 0.870 0.995
1% 3.83 0.703 0.581 0.902
2% 20.90 0.529 0.254 0.508

egy. While performance degrades gradually with increasing noise,
the results remain stable up to 1%, demonstrating the strong re-
silience of our method to imperfect input. Significant degradation
is observed only at the extreme noise level of 2% which, however,
represents an unlikely real-world use case.

Grid Size. We also investigated the impact of the grid resolution
by varying the number of levels in our hierarchical voxel struc-
ture. Specifically, we compare configurations with 1, 2, 4, 6, 8, and
12 levels against our default setup with 10 levels. As illustrated in
Fig. 8, even low-resolution configurations with significantly fewer
grid cells are capable of providing high-quality reconstructions. In-
creasing the number of levels consistently improves the reconstruc-
tion accuracy by capturing finer-scale local deformations. How-
ever, gains beyond 8 levels become increasingly marginal, while
the default configuration of 10 levels strikes a good balance be-
tween accuracy and computational cost. Crucially, the added flex-
ibility of higher resolutions (12 levels) does not degrade perfor-
mance, demonstrating the stability and scalability of our approach.

Initialization. We evaluated how keyframe selection tkey and sur-
face initialization affect reconstruction quality. Specifially, we com-
pared 1) choosing the first frame, 2) the temporal middle frame,
and 3) our coverage-weighted keyframe (see Sec. 3.5), as well as 1)
screened Poisson surface reconstruction [KH13], 2) the deformable
tetrahedron of DynoSurf [YRH∗24], and 3) a pretrained diffusion
initializer [CLZ∗24]. As shown in Table 6, Poisson reconstruction
consistently achieved robust results on the DT4D dataset and is
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Figure 8: Effect of the number of grid levels on reconstruction quality. We report the Chamfer distance (CD) [10−5] to highlight reconstruc-
tion accuracy. Our default configuration with 10 levels is marked in green, while zoom-ins on key regions are shown in blue. Fewer levels
already yield reasonable results, but additional levels enhance fine-scale detail without compromising stability.

Figure 9: Failure cases of our method. Blue regions highlight arti-
facts caused by sparse input sampling at the initial timestep, lead-
ing to errors in the initial surface reconstruction. Red regions indi-
cate correspondence errors resulting from insufficient alignment of
the input points during grid optimization.

insensitive to the keyframe choice. The diffusion initializer may
achieve higher geometric accuracy when seeded with a favorable
keyframe, but it highly relies on good keyframes tkey and quickly
degrades otherwise. In general, both the middle and our selection
scheme yield small, yet reliable improvements over picking the
first frame. Considering the AMA dataset, where diffusion would
require retraining and is therefore excluded, Poisson reconstruc-
tion also outperforms the tetrahedron baseline. Similarly, choosing
the middle frame or our coverage-based keyframe consistently im-
proves the metrics compared to the first frame. Here, our scheme
typically matches the middle frame very closely in practice, mak-
ing it a reliable proxy for the unknown optimal frame. Especially
for the tetrahedron initialization, this leads to substantial gains and
narrows down the gap to Poisson reconstruction. Overall, Poisson
reconstruction offered the best trade-off between accuracy and sta-
bility, especially when paired with our keyframe selection.

4.3. Limitations

While our method demonstrates strong robustness across a range
of scenarios, certain failure cases remain, as illustrated in Fig. 9.
One limitation arises when the point sampling at the keyframe is
too sparse. In this case, the initial surface reconstruction based on
Laplacian regularization may exhibit artifacts that persist through-
out the sequence. This occurs because the surface mesh is op-
timized solely to match the sparse keyframe point cloud, which

Table 6: We compare the behavior of our method when select-
ing the first or middle frame as the keyframe, against our pro-
posed keyframe selection strategy. In addition, we evaluate differ-
ent point cloud-to–surface initialization methods, comparing our
screened Poisson reconstruction to the deformable tetrahedron ap-
proach [YRH∗24] and the pretrained diffusion model [CLZ∗24].

tkey Method CD [×10−5 ] ↓ NC ↑ F-0.5% ↑ F-1% ↑

D
T

4D
First

Diffusion 8.42 0.956 0.942 0.984
Tetrahedron 5.07 0.912 0.879 0.940
Poisson 2.50 0.959 0.951 0.992

Middle
Diffusion 1.87 0.962 0.956 0.992
Tetrahedron 6.70 0.925 0.902 0.948
Poisson 2.32 0.962 0.961 0.994

Ours
Diffusion 3.53 0.960 0.954 0.989
Tetrahedron 4.45 0.925 0.905 0.954
Poisson 2.35 0.962 0.961 0.994

A
M

A

First Tetrahedron 0.60 0.930 0.973 0.998
Poisson 0.59 0.931 0.975 0.999

Middle Tetrahedron 0.60 0.933 0.977 0.998
Poisson 0.52 0.935 0.981 0.999

Ours Tetrahedron 0.54 0.934 0.978 0.999
Poisson 0.53 0.935 0.981 0.999

may lack sufficient detail to constrain the geometry accurately. The
transformation grid cannot resolve these artifacts either, as the cor-
responding erroneous regions are represented by too few points in
subsequent timesteps to trigger corrective deformations. Another
limitation involves occasional errors in transformation estimation,
particularly when the grid is not sufficiently optimized with respect
to the input. This can lead to inaccurate local correspondences,
which propagate over time and degrade alignment quality. These is-
sues are partially influenced by the confidence scaling term, which
controls the influence of previous steps in the optimization.

5. Conclusion

We introduced Preconditioned Deformation Grids, a
correspondence-free and training-free technique for estimating
coherent deformation fields directly from unstructured point cloud
sequences. Our method addressed the inherently under-constrained
nature of this problem by employing Sobolev preconditioning,
which spatially diffuses gradient information to achieve a spatially
adaptive smoothness. We further guided the optimization using
multi-resolution voxel grids to represent the deformation field,
allowing coarser levels to maintain temporal coherence over long
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sequences and finer levels to capture high-frequency surface de-
tails. Through extensive qualitative and quantitative experiments,
we demonstrated that our method achieves superior reconstruction
results over existing methods using only a simple Chamfer loss
and a weak isometry loss, providing a robust and flexible solution
for arbitrary object motion without relying on restrictive priors or
extensive training data.

Future Work. Our framework offers a solid foundation for sev-
eral natural extensions. Beyond point clouds, adapting it to richer
representations such as 3D Gaussian Splatting or implicit neural
primitives could broaden its applicability to 4D capturing scenar-
ios. Moreover, modifying the grid structure toward physically moti-
vated formulations may enable the estimation of complex dynamics
including fluid motion, thereby bringing reconstruction and simula-
tion closer together. Finally, exploring adaptive or learned precon-
ditioning strategies could further improve robustness by adjusting
smoothness to local data characteristics.
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