RIFTCast: A Template-Free End-to-End Multi-View
Live Telepresence Framework and Benchmark

Markus Plack
University of Bonn
Bonn, Germany
mplack@cs.uni-bonn.de

Domenic Zingsheim
University of Bonn
Bonn, Germany
zingsheim@cs.uni-bonn.de

Patrick Stotko
University of Bonn
Bonn, Germany
stotko@cs.uni-bonn.de

Telepresence Multi-View Capturing

Matthias B. Hullin
University of Bonn
Bonn, Germany
hullin@cs.uni-bonn.de

Janelle Pfeifer
University of Bonn
Bonn, Germany
pfeifer@cs.uni-bonn.de

Hannah Droge
University of Bonn
Bonn, Germany
droege@cs.uni-bonn.de

Reinhard Klein
University of Bonn
Bonn, Germany
rk@cs.uni-bonn.de

Benchmark

€

Figure 1: RIFTCast allows sharing immersive 3D experiences (left) based on multi-view RGB image sequences that are captured
from various capturing configurations (middle) and offers a new multi-actor benchmark with complex interactions (right).

Abstract

Immersive telepresence aims to authentically reproduce remote
physical scenes, enabling the experience of real-world places, ob-
jects and people over large geographic distances. This requires the
ability to generate realistic novel views of the scene with low latency.
Existing methods either depend on depth data from specialized
hardware setups or precomputed templates such as human models,
which severely restrict their practicality and generalization to di-
verse scenes. To address these challenges, we introduce RIFTCast, a
real-time template-free volumetric reconstruction framework that
synthesizes high-fidelity dynamic scenes from a multi-view RGB-
only capture setup. The framework is specifically targeted at the
efficient reconstruction, transmission and visualization of complex
scenes, including extensive human-human and human-object inter-
actions. For this purpose, our method leverages a GPU-accelerated
client-server pipeline that computes a visual hull representation
to select a suitable subset of images for novel view synthesis, sub-
stantially reducing bandwidth and computation demands. This

This work is licensed under a Creative Commons Attribution 4.0 International License.
MM °25, Dublin, Ireland

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2035-2/2025/10

https://doi.org/10.1145/3746027.3754789

lightweight architecture enables deployment from small-scale con-
figurations to sophisticated multi-camera capture stages, achieving
low-latency telepresence even on resource-constrained devices. For
evaluation, we provide a comprehensive high-quality multi-view
video data benchmark as well as our reconstruction and rendering
code, including tools for loading and processing a variety of data
input formats, to facilitate future telepresence research.

CCS Concepts

« Computing methodologies — Image-based rendering; Re-
construction; Volumetric models; Mixed / augmented reality;
Virtual reality.

Keywords

Telepresence, Streaming, Dynamic Reconstruction, Novel View
Synthesis, Multi-View, Benchmark

ACM Reference Format:

Domenic Zingsheim, Markus Plack, Hannah Drége, Janelle Pfeifer, Patrick
Stotko, Matthias B. Hullin, and Reinhard Klein. 2025. RIFTCast: A Template-
Free End-to-End Multi-View Live Telepresence Framework and Benchmark.
In Proceedings of the 33rd ACM International Conference on Multimedia (MM
’25), October 27-31, 2025, Dublin, Ireland. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3746027.3754789

https://orcid.org/0000-0002-0224-5066
https://orcid.org/0000-0003-1582-4662
https://orcid.org/0000-0001-7163-4279
https://orcid.org/0009-0002-6514-6951
https://orcid.org/0000-0002-2608-0278
https://orcid.org/0000-0002-8041-5665
https://orcid.org/0000-0002-5505-9347
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3746027.3754789
https://doi.org/10.1145/3746027.3754789

MM °25, October 27-31, 2025, Dublin, Ireland

1 Introduction

The ability to perceive physical presence in remote environments
has been a long-standing area of research, with numerous applica-
tions that open up new possibilities to collaborate and interact over
long distances. Thanks to the advances and increasing availability
of Augmented Reality (AR) and Virtual Reality (VR) technology, the
exploration and sharing of immersive 3D experiences have gained
significant attention. Crucial factors for enabling such authentic
experiences are real-time visualization frame rates, a high respon-
siveness with a minimal latency, as well as free-form navigation
through the virtual environment such that interactions feel natural,
smooth, and immediate. However, remote environments are typ-
ically captured and shared from a fixed set of cameras and their
viewpoints, which necessitates the synthesis of novel views from
an on-the-fly estimated representation of the dynamic scene in
order to meet these requirements — challenges that are addressed
by telepresence methods.

Previous approaches tackled these problems by reconstructing
textured 3D meshes of the scene from multi-view video data [36, 42,
52]. These setups rely on available depth data that is additionally
provided by the respective camera setups to estimate the scene
geometry. In the common use case of human performance captur-
ing, dynamic reconstruction methods have been equipped with
prerecorded template models as priors to ensure plausible mo-
tions [58, 63]. However, while enabling realistic results, template
models inherently restrict the range of applicable scenarios, thereby
excluding cases that involve non-human subjects such as animals
or unconventional motions and objects. Orthogonal to these meth-
ods that aim for reconstructing an explicit 3D model which can be
directly visualized with standard rendering tools, Neural Radiance
Fields (NeRF) [45] and 3D Gaussian Splatting (3DGS) [34] have
demonstrated to provide an astonishing degree of realism in novel
view synthesis from color images only, but require extensive offline
training times, limiting their applicability for real-time scenarios.
This computational bottleneck highlights the need for lightweight
approaches and optimized pipelines to enable telepresence within
reasonable bandwidth and compute constraints.

In this paper, we present RIFTCast, a Real-time, Immersive,
Free-viewpoint Telepresence system that is particularly tailored for
streaming and synthesizing high-fidelity dynamic scenes from var-
ious capture configurations including small-scale consumer-grade
setups as well as large professional capture stages with controlled
illumination. To this end, we designed a template-free, real-time
volumetric reconstruction framework that leverages a visual hull-
based representation computed from foreground mask images to
efficiently select suitable RGB views for rendering. This enables our
method to support arbitrary dynamic scene content exhibiting com-
plex human-human and human-object interactions without the ne-
cessity of precise temporal tracking of correspondences. We achieve
this by an efficient data representation and architectural separation
of responsibilities across our hardware components. In order to
combat the lack of available code for state-of-the-art telepresence
systems, we will release our telepresence framework and toolbox
for handling various different dataset input formats. Furthermore,
we captured a multi-view video data benchmark featuring diverse
scenes and actions, available at https://cg.cs.uni-bonn.de/riftcast.

Zingsheim et al.

In summary, our key contributions are as follows:

o A real-time GPU-accelerated reconstruction pipeline that
synthesizes novel views via adaptively estimating dynamic
geometry and textures directly from multi-view RGB im-
age sequences without relying on depth information or pre-
scanned template models.

o A lightweight, bandwidth-efficient client-server architecture
that offloads intensive computations to the server, enabling
simultaneous low-latency telepresence across multiple users
and a wide range of devices including low-end hardware.

e A new benchmark dataset with complex multi-actor mo-
tions and interactions for evaluating real-time telepresence
systems under diverse conditions.

The source code is available at https://github.com/vc-bonn/RIFTCast.

2 Related Work

3D Reconstruction. Due to the success of the seminal KinectFusion
work [30, 49], reconstructing static 3D scenes with affordable RGB-
D cameras in real time gained significant popularity. To also handle
and reconstruct free-form, non-rigid scenes, DynamicFusion [48]
represented the scene in a canonical space and estimated a volumet-
ric warp field for transforming to the current live frame. Further
extensions explored more robust deformation estimation by ex-
tracting color features [29], handling topological changes [59, 60],
predicting occluded motion [40], or leveraging additional sensors
such as IMU data [79] or high-speed, yet low-resolution image
data [25]. In addition, different scene representations such as surfel-
based models [22, 35] were considered.

While the aforementioned approaches aim for single-camera
scenarios, multi-view RGB-only [24, 64] and RGB-D [14, 15] setups
allow to handle more challenging motions during performance
capturing. To estimate plausible motions, human priors such as
prerecorded and pretrained 3D template models [26, 31, 58, 63]
have been leveraged as additional deformation constraints. Further-
more, recent methods also considered explicitly modeling human-
human and human-object interactions via separate scene repre-
sentations [24, 31, 63]. However, these approaches either need
long a-priori per-scene training [24], do not generalize to arbitrary
scenes [58], or rely on available depth information [14, 15, 31, 63].
Close to our system, some works focused on high-quality texture
rendering [14, 44, 64]. In particular, Motion2Fusion [14] uses projec-
tive texturing and photo-consistency to achieve sharper texturing
results while LookinGood [44] fills holes via neural re-rendering
and has been trained with a human head prior to enhance details.
Despite these similarities, our system works with RGB-only data
and does not impose any constraints on the captured scene content
making it applicable to a wider range of scenarios.

Novel View Synthesis. Traditional novel view synthesis has been
realized via warping of explicit representations such as point clouds
based on multi-view stereo [6, 7, 19, 23]. Another line of research
focused on silhouette-based approaches that leverage the visual hull
as a computationally efficient proxy geometry [9, 12, 50, 71, 77].
Recent progress has been driven by neural scene representations
and, particularly, by the seminal Neural Radiance Fields (NeRF) [45]
which achieved remarkable visualization results. This led to a
plethora of extensions to address its limitations including faster

https://cg.cs.uni-bonn.de/riftcast
https://github.com/vc-bonn/RIFTCast

RIFTCast

MM °25, October 27-31, 2025, Dublin, Ireland

Capture System

RGB Request

Server-Side Reconstruction

Masks
A N o |

T Ring Buffer T

—
Image Processing | —> U

a Primitive
47 Visibility Map
&)
Visual Hull
| S

Camera View
Selection

GPU Matting

RGB Images (select.)

Texture Mapping Inpainting

Figure 2: Overview of the proposed end-to-end telepresence pipeline. The pipeline consists of a multi-camera capturing system,
a server responsible for real-time geometry reconstruction and texture mapping, and client devices for visualization.

training times [8, 20, 46, 47], more accurate geometry estimation
via depth cues [1, 13, 56], or reducing aliasing artifacts [2—4]. Var-
ious methods also extended NeRF-based novel view synthesis to
dynamic scenes, either by modeling deformations [53, 55], or by
considering the temporal dimension [18, 21, 38, 67, 73]. More re-
cently, 3D Gaussian Splatting (3DGS) marked another milestone,
as it enabled real-time rendering performance by representing the
scene as a set of Gaussian splats [34], and has since been further
explored to also handle, e.g., dynamic scenes [28, 37, 72]. However,
these approaches require offline training within minutes or hours
and are thereby limited to replay use cases as opposed to the live
telepresence scenario which is targeted by our method.

Telepresence Systems. Developing immersive telepresence system
has been a challenging endeavor due to the high demands in terms
of real-time visualization of an on-the-fly reconstructed scene model.
3D reconstruction methods working with cheap RGB-D sensors
like KinectFusion [30, 49] enabled telepresence application at room
scale [32, 42, 43]. In this context, live remote exploration of static
places captured by a moving camera has been investigated [61, 75]
and further extended to scenes with dynamically moving peo-
ple [27], collaborative labeling scenarios [81], and robot teleopera-
tion [62]. Other scenarios include teleconferencing system which
primarily focused on high-quality reconstruction and immersive
rendering of the participant’s upper body even without requiring
head-mounted displays [36, 69, 70, 78]. Concerning full human per-
formance captures, more sophisticated multi-view capture setups
have been proposed [5, 10, 17, 52, 54, 80]. In particular, Holoporta-
tion [52] is built upon a fast dynamic 3D reconstruction [15] pipeline
to obtain and stream detailed textured 3D models. Although all the
aforementioned systems pushed the limits towards immersive telep-
resence, they are usually specifically tailored to a certain capturing
scenario and setup and rely on specially crafted pipelines without
respective open-source implementations. In contrast, our telepres-
ence framework builds upon a lightweight architecture that makes
it suitable for various capturing configurations and that will be
released to the community to foster future research.

3 Pipeline Overview

Our full end-to-end telepresence pipeline, from capture to client, is
outlined in Fig. 2, aiming to provide real-time volumetric streaming
of 3D scenes to VR headsets or standard displays using color images
alone. Starting with the multi-view images recorded by the capture
system using a set of pre-calibrated cameras, we perform initial

processing, i.e., color correction and optical undistortion, followed
by a real-time estimation of foreground masks used for geometry
reconstruction. For an in-depth description of our capture system,
please refer to Sec. 4. Note that our pipeline only requires the masks
and images, and as such, other setups can easily be realized and
integrated, which we show exemplary on a minimal setup (Sec. 4.1).

During capturing, the masks and a subset of the images are
transmitted to the reconstruction server (Sec. 5) for geometry
reconstruction and texturing. While the compressed binary masks
are compact and efficient to transmit, the color images are more
demanding in terms of bandwidth. To address this, we propose a
camera view selection strategy based on a visual hull inferred from
the masks and compute per-camera visibility maps. This guides
the selection of an optimal subset of views, balancing quality and
efficiency. The chosen color images are subsequently transmitted
for texture mapping, followed by an inpainting algorithm to refine
textures and correct artifacts.

The final renderings can be displayed on several remote client
devices such as VR headsets or standard displays. Since expensive
reconstruction and rendering are offloaded to the reconstruction
server, the hardware requirements to the client are low, ensuring
broad accessibility across a wide range of devices.

4 Capture System

As mentioned above, our capture system only has a few essen-
tial requirements to ensure compatibility with our reconstruction
pipeline. We describe a full-scale setup using a capture stage for
maximum quality, but also present a more lightweight alternative
to suit different needs and demonstrate the versatility of our system.
In essence, the system must be able to provide synchronized multi-
view images and their corresponding foreground masks along with
pre-computed calibration data that is used for the reconstruction.

4.1 Image Acquisition Hardware

Our capture stage consists of 34 RGB cameras with a resolution
of 24.5 MP affixed to a cylindrical scaffolding with a diameter of
5.25m. In addition, 46 mounted video lights provide a uniform
illumination of the subjects, shining through a stretched fabric
layer that contains cut-out holes for the camera lenses and ensures
an uninstrusive background for matting. All cameras are connected
to an array of capture servers via optical cables where each machine
handles up to 4 cameras and features a NVIDIA RTX 4070 Ti Super
for local processing, 128 GB RAM for buffering, and 8 SSDs with a
total storage capacity of 16 TB.

MM °25, October 27-31, 2025, Dublin, Ireland

Minimal Capturing Setup. Our system requires only standard RGB
cameras, thereby enabling a minimal and cost-efficient capturing
configuration. Depending on the desired output quality, such a setup
can be realized with lower-cost cameras without compromising the
core functionality of our method. To demonstrate the capabilities
of our approach in resource-constrained environments, we conduct
additional experiments using a minimal capture setup of 4 cameras
arranged in a half circle in front of the recorded subject.

4.2 Local Processing and Buffering

The raw images from the cameras are transferred into VRAM and
processed on the GPU. We apply demosaicing, white balance, color
correction, undistortion, and gamma correction within a custom
CUDA kernel and compress the resulting image via JPEG encoding
using nvJPEG [51] for network transfer. The uncompressed images
are also passed to a background matting network to generate fore-
ground masks (see Sec. 4.3). Both the mask and compressed image
are stored in a ring buffer in RAM to conserve VRAM. Using the
frame index, which is an increasing counter, the images and masks
can be arbitrarily retrieved from the buffer for network transfer.

4.3 Foreground Extraction

To extract accurate foregrounds from the captured images, we rely
on the real-time matting pipeline introduced by Droge et al. [16].
Because our setup features a fixed background during capture, we
can reliably incorporate this static background as a prior into the
matting framework to improve its accuracy. Specifically, we record
a set of images of the empty capture stage before recording and then
proceed with the actual capturing process with the present subjects.
Building on this, we finetuned an adopted version of the matting
model proposed by Lin et al. [39] on a small dataset of images 40
acquired in our setup to extract highly detailed foregrounds in real
time. Finally, we binarize each of the foreground-background masks
for further processing.

4.4 Communication Interface

Efficiently transferring mask data between the capture and recon-
struction servers requires special attention as the resulting high
volume of data demands significant bandwidth for transmission
and leads to overhead when uploading the data from the network
thread to the GPU. To address these challenges, we do not represent
the binarized masks as ordinary images but rather compress them
into a run-length encoded format. Since we only require binary
information indicating whether a pixel belongs to foreground or
background, we encode the masks by storing counts of consecu-
tive pixels with identical values in a one-dimensional array and
subsequently computing the cumulative sum over these run-length
counts. In this representation, each bin i denotes the first linear
pixel index of a new segment, where the segment type (foreground
or background) is determined by the parity of i. During decoding,
the pixel value at any given index can be efficiently retrieved via
binary search over these bins and checking the bin’s parity. Addi-
tionally, we store a single flag indicating the segment type of the
first pixel to correctly interpret the parity information.

Zingsheim et al.

5 Server-Side Reconstruction

In this section, we detail the server-side reconstruction and ren-
dering processes of our pipeline. First, we describe our scene re-
construction method in Sec. 5.1 which consists of 1) real-time vol-
umetric geometric reconstruction; 2) a sparse texture selection
algorithm that works without explicit color data; 3) a fast projective
texture mapping approach; and 4) inpainting-based post-processing
to ensure temporally consistent result. This way, we can reduce
data streaming to a small subset of the captured data and, thereby,
significantly save bandwidth and runtime. Finally, we discuss the
server-client communication in Sec. 5.2 and the final visualization
at the remote clients in Sec. 5.3.

5.1 Scene Reconstruction

5.1.1 Volumetric Geometry Reconstruction. Our geometry recon-
struction process relies solely on a set of foreground segmentation
masks, which can be used to construct a visual hull for the geometry
representation. These masks are processed and compressed on the
capture servers, reducing bandwidth requirements, and are directly
streamed and decoded into GPU memory on the reconstruction
server with minimal overhead.

To construct the visual hull from the given masks, we build a
sparse octree that contains the set of candidate voxels forming
a small band around the surface geometry [57]. Afterwards, we
extract the isosurface via Marching Cubes [41] and apply post-
processing by removing duplicate vertices to obtain a clean water-
tight mesh of the scene geometry. Note that all these operations
are executed in real time and independently for each frame which
allows our method to avoid the inherent computational cost asso-
ciated with multi-frame tracking and correspondence estimation.
Furthermore, computing an explicit representation offers advan-
tages beyond reconstruction, as it enables the extraction of auxiliary
information to support various downstream processing tasks, such
as image selection and occlusion handling.

One key application of this representation is the generation of
primitive visibility maps for each camera view, which determine
the visible portions of the reconstructed mesh from that view. This
is achieved by rendering the mesh using the known camera pa-
rameters of the capturing system and storing unique triangle IDs.
Here, the rasterization pipeline automatically handles occlusion of
primitives as non-visible triangles are discarded during z-testing. To
reduce computational overhead, the visibility maps are generated in
a lower resolution where we specify the image width as 400 pixels
and compute the height based on the known camera intrinsics to
preserve the original aspect ratio.

5.1.2 Camera View Selection. Based on the primitive visibility in-
formation and the visual hull-based scene geometry, we developed
a novel camera view selection method that efficiently determines
the most relevant input views for texturing, without requiring ad-
ditional access to color information. Choosing a subset is crucial to
meet the bandwidth and runtime constraints of the telepresence
scenario, so we leverage the per-input-view associated primitive
maps and render a corresponding map for the novel target view V.

To compare visibility across views, we first convert the primi-
tive visibility maps into binary vectors. For each view i € 7 with
I ={1,...,nc}, we define a binary vector b; € {0, 1}"7 where np

RIFTCast

ALGORITHM 1: Greedy Camera Selection

Input: Candidate camera set I ; target vector by € {0,1}"7;
visibility vectors {b;};c r; size of subset k
Output: Selected camera indices S
S0
while by # 0 and |S| < k do
i* « arg max;c 7 (b;, by)
S — SuU{i*}
I T\ {i"}
by « by © (1-b;+)
end
return S

is the total number of primitives. Each entry b;; is given by

1,

We compute this binary representation for each camera as well as
for the virtual viewpoint by.

Our objective is to select a subset S C I of k camera views (i.e.
|S| = k) that best captures the primitives observed in the reference
view by . Thus, we maximize the similarity between the aggregated
visibility and the reference view, that is

if triangle j is visible form view i,)

otherwise.

S = ?Trg‘}nlii <i>ébi,bv> (2)

where ;¢ 7 b; denotes the element-wise disjunction (logical OR)
of the binary vectors b; and (-, -) the dot product.

We address this optimization problem using a greedy strategy,
as shown in Alg. 1. In the first step, we select the camera view i*
that observes the greatest number of triangles present in the target
view. Once a camera is selected, we add it to the subset S, remove
it from the candidate set 7, and update the reference vector by by
setting the entries to zero which correspond to triangles already
covered by the selected view. This way, cameras are prioritized that
are likely to capture previously unseen regions, thereby improving
overall target view coverage. The repeat this process until either all
triangles are covered or k cameras have been successfully selected.
It is worth to mention that, although some cameras might observe
already covered triangles, this additional information is beneficial
to ensure that critical primitives are well represented.

5.1.3 Projective Texture Mapping. After the subset S has been de-
termined, the actual projective texturing is performed in a final
render pass. For this, we request the RGB images of the selected
views, decompress them, and copy them into OpenGL textures. Fur-
thermore, we render depth maps D; from the selected views i € S to
perform occlusion testing. To reduce ghosting artifacts that appear
if the occlusion test near the boundary of objects fails, we use a sim-
ilar technique to Holoportation [52]. However, instead of looking
for discontinuities of the depth values in image space, we render out
the depth maps with slightly inflated meshes such that boundary
pixels are more likely to fail the occlusion test. Given a fragment’s
world position v, we compute its projected UV-coordinates into the

MM °25, October 27-31, 2025, Dublin, Ireland

i-th camera view,
1 . 1
wi(@) = 5 (2P Vi 9)yy) + 5 € 0.1 ©

where the 0 represents the position v in homogeneous coordi-
nates, 7t denotes perspective division, and P; - V; is the combined
view-projection matrix for camera i. We additionally retain the z-
coordinate of this projection, so we can use it for occlusion testing
by comparing it to the corresponding pixel value in the previously
generated depth map D;. All colors passing this depth test are col-
lected and then blended together via additive blending to infer the
final color of the fragment
c= ZiGS Wi Ci, w; = Wpormal . Wyiew. (4
Dies Wi ' '
Here, w; consists of a normal-based weight [52] and a view-based
weight [17]. The first weight wlr.“’rma1 uses normal information n
from the visual hull to minimize distortions by down-weighting
triangles that are significantly tilted with respect to the camera’s
per fragment viewing direction d;:
w?ormal = max(0, {n, d;)%). (5)

The second weight w;’iew is calculated based on the alignment

between the virtual per fragment viewing direction d and d;:
w}'iew = max(O, , di)ﬂ). (6)

Thus, w;’iew prioritizes cameras whose viewing angles closely match
the virtual view, assigning higher weights to pixels observed under
similar viewing directions. The hyperparameters « and § control
the influence of certain directions and we choose @ = 2 and ff = 16
throughout all experiments.

5.14 Video Inpaiting. While our camera view selection and projec-
tive texturing approach enables efficient novel view synthesis, small
parts of the mesh, e.g. close to occlusion boundaries discontinuities,
may not be textured from the k cameras views or exhibit artifacts.
To address these issues, we apply a real-time inpaining algorithm
as a final post-processing step for texture reconstruction. For this
purpose, we additionally export a binary mask with regions that
could not be reconstructed during the previously outlined textur-
ing pass. Afterwards, we apply a video inpaining framework [66]
in these regions which, by taking information from the previous
inpainted frames into account, ensures temporal consistency.

5.1.5 Thread and GPU Handling. In order to achieve good perfor-
mance, it is vital to reduce the amount of memory transfer between
CPU and GPU. As some of the aforementioned operations are ex-
ecuted in CUDA kernels and most of the rendering-related tasks
are performed in OpenGL shaders, we use the interoperability be-
tween the two to facilitate efficient synchronization directly in GPU
memory. Furthermore, we use a multi-GPU architecture where one
GPU is used to handle the geometry reconstruction (Sec. 5.1.1) and
one is used for rendering and inpaining (Sec. 5.1.2 to 5.1.4). Both
of these GPUs are accessed by a different set of threads to reduce
synchronization overhead which is depicted in Fig. 3.

First, the reconstruction thread handles the reconstruction GPU. It
receives the compressed foreground segmentation masks from the
capture server and uploads them onto the GPU where the data is

MM °25, October 27-31, 2025, Dublin, Ireland

(CRender Request (C) Send Response ~ ——> Render Signal ——> Image Copy ~ —» Geometry Copy

Recongiicten [Visual Hull][Visual Hu]l][Visual Hul]]E
—

Reconstruction

Thread GPU

v

A2 v
Rendk
T;:e:; Render L Render [TRender C Rendering
POS‘_F;:‘::;“"E | Inpaintl] ‘Inpaiml] InpaimlJ (Y
O- - & - ¢

Network
Thread o

Figure 3: Overview of our dual-GPU reconstruction server
with multi-threaded processing.

decoded into a pre-allocated image buffer and used for the geome-
try reconstruction. Second, the rendering thread is responsible for
the texture reconstruction, which is performed on the designated
rendering GPU. This thread performs our proposed camera view se-
lection algorithm and requests the corresponding RGB images from
the capture servers. As mentioned in Sec. 4.2, the capture servers
compress the selected images into JPEG byte streams, which are
then received and directly decoded into the device memory of the
reconstruction server via hardware-accelerated decompression [51].
The decoded data is then copied into an OpenGL texture object,
which eliminates the overhead of traditional CPU-to-GPU transfers,
and the final texture mapping is performed in a fragment shader.

In order to scale the system to multiple remote users, each client
spawns its own rendering thread when connecting to the server.
Each thread spawned this way is also associated with its own client-
exclusive memory to avoid race conditions and expensive synchro-
nization. On top of that, as the rendering tasks are independent
for each client, each thread creates and handles its own OpenGL
context. Synchronization between the two GPUs is only necessary
when copying the geometry representation into the clients’ local
memory, which is directly mapped to an OpenGL vertex buffer for
texturing. Additionally, each client also spawns a post-processing
thread that is responsible for running video inpainting on the ren-
dered results to further improve visualization quality.

5.2 Server-Client Communication

Lastly, the server has to send the rendered result back to the in-
dividual clients which is performed in a dedicated network thread
as shown in Fig. 3. We again use hardware accelerated JPEG com-
pression to encode the final rendering on the GPU and send the
resulting byte stream to the client. In addition, we also encode and
send the depth buffer such that other tasks like reprojection for
VR headsets can be performed on client side. As lossy JPEG com-
pression would create artifacts in the depth map that are noticeable
in the final rendering, the depth data is instead encoded via quan-
tization by remapping the values to 16-bit integers and applying
lossless compression via zstd [74].

5.3 Remote Clients

The last component of our telepresence system are the remote
clients. Since our goal is to perform most of the computationally
expensive tasks on the reconstruction server, the remote clients can
run on comparatively cheap hardware as for example a smartphone
or lower-end graphics cards. In the simplest scenario, they send the
current viewing position and direction to the server and receive an

Zingsheim et al.

image of the reconstructed scene from this location, which then
only has to be decoded and displayed. However, this can lead to
an unpleasant user experience (for example in VR) if the latency is
too high or the reconstruction frame rate is too low. To mitigate
this problem, the reconstruction server also sends depth data of
the scene to the client as described in Sec. 5.2. This additional
information can then be used to generate a point cloud that can
be re-rendered on the client side. Using this technique, the actual
rendering framerate is decoupled from the reconstruction framerate
as necessary intermediate frames can be generated on the client side
which leads to a significantly smoother experience. Note that this
cheap approximation also directly allows to render a second view
on the client side for VR headsets without additional overhead.

6 Benchmark

We introduce a new benchmark dataset that is particularly designed
for multi-view reconstruction and novel view synthesis tasks. The
dataset was recorded with the capturing system described in Sec. 4
and comprises video data across 32 unique scenes. Unlike prior
datasets focused on single subjects [68, 76], ours contains scenes
with multiple actors and a wide range of objects, from rigid to
soft, small to large, and diffuse to reflective. It also features ani-
mals and topologically challenging interactions (e.g., objects moved
out of backpacks, cloth folding), which are designed to test the
limits of dynamic reconstruction systems. The video sequences
cover a variety of actions lasting from 2 to 20 seconds and were
recorded at a resolution of 2664 X 2304 pixels at 25 FPS. Thus,
they offer significantly more details than the TotalCapture [68] or
the CMU Panoptic datasets [33] and mostly match the quality of
the DNA-Rendering [11] dataset but at higher framerates. Each
recording includes high-resolution color images, per-frame fore-
ground masks for both humans and objects, separately captured
background images — a feature not available in the other datasets -
as well as full camera calibration data. To facilitate the evaluation
of generalization to out-of-distribution viewpoints, we added an
additional dedicated camera positioned outside the regular camera
arrangement to act as a challenging test viewpoint.

7 Evaluation

In order to evaluate our telepresence pipeline, we analyze runtime
performance, data transmission bandwidth, as well as reconstruc-
tion quality. An ablation study further demonstrates the impact
of our system design in terms of both quality and runtime. For
evaluation, the reconstruction server runs on two NVIDIA A100
with an AMD Epyc 7713 CPU whereas for the remote client, we
use a Laptop with a NVIDIA RTX 2070 Max-Q. For VR applications,
we send the final rendered image to a Meta Quest Pro.

7.1 Reconstruction Quality

We compare the reconstruction quality of our method to the out-
of-the-box implementation of an offline NeRF (Nerfacto) and 3DGS
(Splatfacto) pipeline via Nerfstudio [65]. For the splatting approach,
we initialize the scenes with point clouds obtained from the visual
hull since random initializations led to poor results. Fig. 4 presents
a qualitative comparison between Splatfacto and our method. Our
approach achieves a reconstruction quality comparable to the offline

RIFTCast

Test View

Splatfacto Ours

Figure 4: Qualitative comparison between Splatfacto, and our
method across different scenes from an unseen test view.

method while faithfully capturing multiple subjects and objects,
including intricate fabric details. Notably, the second row of the
figure reveals distinctly clearer textures, highlighting our method’s
ability to capture fine details. For additional qualitative results, we
refer to the supplemental video.

For a quantitative comparison, we evaluated the methods on a
subset of the DNA-Rendering [11] dataset in Table 1. They pro-
vide data from a capture stage similar to ours with 48 cameras at
2048 % 2448 pixels and we used the masks provided with the data.
The table shows a clear quality-performance trade-off between the
methods. For a fair comparison, we evaluated our method only on
one GPU like the other methods. Note that in our complete pipeline,
the total frame-time is lower due to parallelization and distributed
computing as described previously. While Splatfacto achieves the
best quality in terms of PSNR and SSIM, this comes at a high com-
putational cost. This is because Splatfacto uses all available images
which provides more information in occluded regions (Fig. 5). Our
method also struggles with highly reflective objects because our
blending approach creates artifacts in the highlights.

Table 1: Quality comparison and GPU time between offline
reconstruction and our method on DNA-Rendering [11].

MM °25, October 27-31, 2025, Dublin, Ireland

Test View Splatfacto Ours

Figure 5: Quality-performance trade-off of our method com-
pared to Splatfacto on challenging scenes with occlusions.

Figure 6: Reflective materials can create artifacts if seen from
slightly different views.

In contrast, our method offers a competitive improvement in
quality over Nerfacto but only requires a tiny fraction of its compu-
tation time. The disparity in quality between Nerfacto and Splatfaco
can partly attributed to the relatively low amount of total camera
viewpoints compared to NeRF-related datasets which manifests in
several floaters in Nerfacto’s model. These results clearly demon-
strate that our method substantially outperforms both approaches
in terms of computational speed, while still providing sufficient
reconstruction quality, leading to an effective trade-off between
image quality and processing time.

In addition, we evaluated our framework on our recorded bench-
mark dataset introduced in Sec. 6. We divided our experiments into
two distinct sub-experiments. The upper part of Table 2 presents
a comparison to Splatfactor on a randomly sampled subset of 32
frames from the dataset — a necessary approach given that 3DGS
would require prohibitively long training times on the full dataset.
To ensure best coverage of the dataset, we sampled one random
data point from each video. The lower part of the table presents our
method’s performance on the complete dataset. In both cases, our
method achieves a similar quality as offline reconstruction, while
reaching real-time reconstruction and rendering speed.

Table 2: Quality comparison and GPU time between offline
Splatfacto and our method on our provided benchmark.
indicates evaluation on a subset and T on the full dataset.

Method PSNRT SSIMT LPIPS | Time |

Method ~ PSNR SSIM LPIPS Ti
Splatfacto-big 34.5(29) 0.976(16) 0.028(8) 11.25(43) min S ! T l ime |
Nerfacto-big ~ 29.5(35) 0.920(71) 0.061(28) 1.48(14)h Splatfactof 30.7(49) 0.920(237) 0.058(62) 12.7(4) min
Ours w/o inp. 29.8(27) 0.930(41) 0.031(9) 35.8(25) ms Ours* 20.4(33) 0.960(25) 0.030(16) 52.3(36) ms
Ours 20.9(27) 0.932(40) 0.030(9) 41.5(82) ms Ours' 20.1(33) 0.953(25) 0.033(18) 51.3(43) ms

MM °25, October 27-31, 2025, Dublin, Ireland

Figure 8: Two viewing angles Figure 9: Direction-based
of the reconstruction from (left) vs. our (right) view
our minimal capture setup. selection.

To demonstrate the adaptability of our framework, we also evalu-
ated its performance using a minimal capturing setup consisting of
4 cameras, as described in Sec. 4.1. Fig. 8 illustrates the qualitative
results for two novel views, showing the ability to capture geometry
and texture details even under constrained data conditions.

7.2 Runtime and Bandwidth

We evaluated the bandwidth for a live telepresence transmission
over an interval of 60 s. In our experiments, the bandwidth gener-
ally fluctuates between 10 Mbit/s and 40 Mbit/s, depending on the
visible scene content and the relative position of the remote view.
In general, the average bandwidth in this scenario is 21.21 Mbit/s,
which shows that our approach can be used in bandwidth limited
scenarios. For the connection between capture and reconstruction
server, the average bandwidth is about 1.4 Gbit/s. It is important to
note, however, that this only impacts the capturing side and does
not affect the remote client’s capabilities.

In Table 3, we report the runtime across various processing stages
in our system. By adding all of these together, we get an overall
average latency of 141.08 ms between a captured frame and the final
reconstruction observed by the client. Thus, the system performs
within the range necessary for seamless human interaction, aligning
with the typical response times observed in comparable systems.
Note that due to the parallel processing of frames, the total frame
rate is determined by the maximum of the individual times, i.e. 23
FPS. This shows that our system is capable of low-latency, real-time
streaming for immersive telepresence applications.

We also evaluated the system scalability in a multi-user scenario
in Fig. 11. While in its current form, the runtime scales linearly
with the number of clients, we still achieve interactive frame rates
when streaming up to 4 users. It is also important to note that this
only affects the smoothness of the reconstructed motion. The client
still has a lag-free viewing experience because it can rerender the
already transmitted geometry from previous frames.

m "
532 E]ZO } {
m 2 !
Z29 E 80
W =] ; @ []
26 Z 4aof* *
1 1 1 1 | 1 1 1y 1 1 1 1 | 1 1 1y
3 1 23 456 17 8" 0 1 23 45 6 78
RGB images # RGB images

Figure 10: Effect of image count on system performance.

Zingsheim et al.

. = A
Stage Time (ms) g 150f }
Capturing 34.14(437) g N
Mask Proc. + Reconst. 25.61(631) ‘S 100
RGB Proc. + Rend. 45.40(936) 2 | {
Post-Processing 16.14(213) 50 a
Streaming to Client 19.09(676) : {
Display 0.70(100) r

Lo 1y

Latency 141.08(1406) 0 1 2 3 4

Clients

Table 3: Breakdown of system run- Figure 11: Number of

time in different processing stages. clients vs. runtime.

7.3 Ablation and Limitations

Ablation. We evaluated how different parts of our system affect
the overall reconstruction quality and runtime. Fig. 9 shows a com-
parison between a naive direction-based camera selection and our
proposed method. Since the naive method does not take geometry
into account, regions that are not seen by any camera can not be
textured which leads to holes. In contrast, our method does handle
these cases and thus finds a better coverage of the target geometry.

Because the pipeline is easily extendable, it is also possible to
consider more images for the reconstruction. As shown in Fig. 10,
the quality only marginally improves since the additional informa-
tion is mainly used to fill in the progressively shrinking gaps, which
highlights the efficiency of our greedy selection strategy. However,
this comes with significantly higher runtimes as using more images
increases memory pressure on both the network and rendering
pipeline. We also evaluated the impact of the inpainting. However,
because the affected regions are small, the metrics (Table 1) are
not well suited to capture the impact, yet the visual differences are
clearly noticeable (see supplemental material).

Limitations. Our method relies on the visual hull, which inherently
struggles to accurately reconstruct concavities. This can lead to
ghosting artifacts as the texture may be projected onto wrong or
missing parts of the geometry. Additionally, we assume diffuse
materials, which limits the usability of our system for specular
or transparent objects. Currently, only geometry data is shared
between users, so additionally caching and sharing RGB data could
further improve scalability and reduce the latency of our system.

8 Conclusion

We presented RIFTCast, a multi-view telepresence framework tar-
geting a wide variety of setups and dynamic scenes without relying
on depth data or template models. Our method leverages a light-
weight visual hull-based representation coupled with a bandwidth-
efficient architecture. We openly share our code along with a novel
benchmark dataset to foster reproducibility and to push the bound-
aries of immersive telepresence research. Furthermore, the real-time
performance and lightweight representation achieved by RIFTCast
suggest its potential utility beyond live telepresence, for instance,
as an efficient preview mechanism for navigating and inspecting
large pre-recorded volumetric video datasets before committing to
more computationally intensive, high-fidelity rendering processes.

RIFTCast

Acknowledgments

This work has been funded by the Ministry of Culture and Science
North Rhine-Westphalia under grant number PB22-063A (InVirtuo
4.0: Experimental Research in Virtual Environments), and by the
state of North Rhine Westphalia as part of the Excellency Start-up
CenterNRW (U-BO-GROW) under grant number 03ESCNW18B.

References
[1] Benjamin Attal, Eliot Laidlaw, Aaron Gokaslan, Changil Kim, Christian Richardt,

[2

3

[10

(1

[12

[13

[14

(15

[18

[19

=

=

]

]

]

James Tompkin, and Matthew O’Toole. 2021. Torf: Time-of-flight radiance fields
for dynamic scene view synthesis. Advances in Neural Information Processing
Systems (NeurIPS) 34 (2021).

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo
Martin-Brualla, and Pratul P Srinivasan. 2021. Mip-nerf: A multiscale representa-
tion for anti-aliasing neural radiance fields. In IEEE/CVF International Conference
on Computer Vision (ICCV).

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter
Hedman. 2022. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter
Hedman. 2023. Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields. In
IEEE/CVF International Conference on Computer Vision (ICCV).

Pablo Carballeira, Carlos Carmona, César Diaz, Daniel Berjon, Daniel Corregidor,
Julian Cabrera, Francisco Moran, Carmen Doblado, Sergio Arnaldo, Maria del
Mar Martin, et al. 2021. FVV live: A real-time free-viewpoint video system with
consumer electronics hardware. IEEE Transactions on Multimedia (TMM) 24
(2021).

Gaurav Chaurasia, Sylvain Duchéne, Olga Sorkine-Hornung, and George Dret-
takis. 2013. Depth Synthesis and Local Warps for Plausible Image-based Naviga-
tion. ACM Transactions on Graphics (TOG) 32, 3 (2013).

Gaurav Chaurasia, Olga Sorkine, and George Drettakis. 2011. Silhouette-Aware
Warping for Image-Based Rendering. Computer Graphics Forum (CGF) 30, 4
(2011).

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. Tensorf:
Tensorial radiance fields. In European Conference on Computer Vision (ECCV).
Jun Chen, Ryosuke Watanabe, Keisuke Nonaka, Tomoaki Konno, Hiroshi Sankoh,
and Sei Naito. 2019. Fast free-viewpoint video synthesis algorithm for sports
scenes. In IEEE/RSF International Conference on Intelligent Robots and Systems
(IROS).

Ruizhi Cheng, Nan Wu, Vu Le, Eugene Chai, Matteo Varvello, and Bo Han.
2024. Magicstream: Bandwidth-conserving immersive telepresence via semantic
communication. In ACM Conference on Embedded Networked Sensor Systems.
Wei Cheng, Ruixiang Chen, Wangi Yin, Siming Fan, Keyu Chen, Honglin He,
Huiwen Luo, Zhongang Cai, Jingbo Wang, Yang Gao, Zhengming Yu, Zhengyu
Lin, Daxuan Ren, Lei Yang, Ziwei Liu, Chen Change Loy, Chen Qian, Wayne Wu,
Dahua Lin, Bo Dai, and Kwan-Yee Lin. 2023. DNA-Rendering: A Diverse Neural
Actor Repository for High-Fidelity Human-centric Rendering. arXiv preprint
arXiv:2307.10173 (2023).

Yanran Dai, Jing Li, Yugqi Jiang, Haidong Qin, Bang Liang, Shikuan Hong, Haozhe
Pan, and Tao Yang. 2024. Real-time distance field acceleration based free-
viewpoint video synthesis for large sports fields. Computational Visual Media 10,
2 (2024).

Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. 2022. Depth-
supervised nerf: Fewer views and faster training for free. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).

Mingsong Dou, Philip Davidson, Sean Ryan Fanello, Sameh Khamis, Adarsh
Kowdle, Christoph Rhemann, Vladimir Tankovich, and Shahram Izadi. 2017.
Motion2fusion: Real-time volumetric performance capture. ACM Transactions on
Graphics (TOG) 36, 6 (2017).

Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip Davidson, Sean Ryan
Fanello, Adarsh Kowdle, Sergio Orts Escolano, Christoph Rhemann, David Kim,
Jonathan Taylor, et al. 2016. Fusion4d: Real-time performance capture of chal-
lenging scenes. ACM Transactions on Graphics (TOG) 35, 4 (2016).

Hannah Droge, Janelle Pfeifer, Saskia Rabich, Markus Plack, Reinhard Klein, and
Matthias B Hullin. 2025. Capture Stage Environments: A Guide to Better Matting.
arXiv preprint arXiv:2507.07623 (2025).

Ruofei Du, Ming Chuang, Wayne Chang, Hugues Hoppe, and Amitabh Varshney.
2018. Montage4D: interactive seamless fusion of multiview video textures.. In
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D).

Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B Tenenbaum, and Jiajun Wu. 2021.
Neural radiance flow for 4d view synthesis and video processing. In IEEE/CVF
International Conference on Computer Vision (ICCV).

Martin Eisemann, Bert De Decker, Marcus Magnor, Philippe Bekaert, Edilson
De Aguiar, Naveed Ahmed, Christian Theobalt, and Anita Sellent. 2008. Floating

[20

[21

[22]

I
&

[24

[25

[26

[27

(28]

[29

[30

w
—

(32

[33

&
=)

[35

[36]

[37

[40

MM °25, October 27-31, 2025, Dublin, Ireland

textures. Computer Graphics Forum (CGF) 27, 2 (2008).

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht,
and Angjoo Kanazawa. 2022. Plenoxels: Radiance Fields Without Neural Net-
works. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang. 2021. Dynamic view
synthesis from dynamic monocular video. In IEEE/CVF International Conference
on Computer Vision (ICCV).

Wei Gao and Russ Tedrake. 2019. Surfelwarp: Efficient non-volumetric single
view dynamic reconstruction. In Robotics: Science and Systems.

Michael Goesele, Jens Ackermann, Simon Fuhrmann, Carsten Haubold, Ronny
Klowsky, Drew Steedly, and Richard Szeliski. 2010. Ambient point clouds for
view interpolation. ACM Transactions on Graphics (TOG) (2010).

Suhas Gopal, Rishabh Dabral, Vladislav Golyanik, and Christian Theobalt. 2025.
Betsu-Betsu: Multi-View Separable 3D Reconstruction of Two Interacting Objects.
In International Conference on 3D Vision (3DV).

Kaiwen Guo, Jonathan Taylor, Sean Fanello, Andrea Tagliasacchi, Mingsong Dou,
Philip Davidson, Adarsh Kowdle, and Shahram Izadi. 2018. Twinfusion: High
framerate non-rigid fusion through fast correspondence tracking. In International
Conference on 3D Vision (3DV).

Marc Habermann, Weipeng Xu, Michael Zollhoefer, Gerard Pons-Moll, and Chris-
tian Theobalt. 2019. Livecap: Real-time human performance capture from monoc-
ular video. ACM Transactions on Graphics (TOG) 38, 2 (2019).

Leif Van Holland, Patrick Stotko, Stefan Krumpen, Reinhard Klein, and Michael
Weinmann. 2023. Efficient 3D Reconstruction, Streaming and Visualization
of Static and Dynamic Scene Parts for Multi-client Live-telepresence in Large-
scale Environments. In IEEE/CVF International Conference on Computer Vision
Workshops (ICCVW).

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xi-
aojuan Qi. 2024. Sc-gs: Sparse-controlled gaussian splatting for editable dy-
namic scenes. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Matthias Innmann, Michael Zollhéfer, Matthias Niefiner, Christian Theobalt,
and Marc Stamminger. 2016. Volumedeform: Real-time volumetric non-rigid
reconstruction. In European Conference on Computer Vision (ECCV).

Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
et al. 2011. Kinectfusion: real-time 3d reconstruction and interaction using
a moving depth camera. In ACM Symposium on User Interface Software and
Technology (UIST).

Yuheng Jiang, Suyi Jiang, Guoxing Sun, Zhuo Su, Kaiwen Guo, Minye Wu, Jingyi
Yu, and Lan Xu. 2022. Neuralhofusion: Neural volumetric rendering under
human-object interactions. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Brett Jones, Rajinder Sodhi, Michael Murdock, Ravish Mehra, Hrvoje Benko, An-
drew Wilson, Eyal Ofek, Blair MacIntyre, Nikunj Raghuvanshi, and Lior Shapira.
2014. RoomAlive: Magical Experiences Enabled by Scalable, Adaptive Projector-
Camera Units. In ACM Symposium on User Interface Software and Technology
(UIST).

Hanbyul Joo, Tomas Simon, Xulong Li, Hao Liu, Lei Tan, Lin Gui, Sean Baner-
jee, Timothy Scott Godisart, Bart Nabbe, Iain Matthews, Takeo Kanade, Shohei
Nobuhara, and Yaser Sheikh. 2017. Panoptic Studio: A Massively Multiview
System for Social Interaction Capture. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI) (2017).

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis.
2023. 3d gaussian splatting for real-time radiance field rendering. ACM Transac-
tions on Graphics (TOG) 42, 4 (2023).

Carmel Kozlov, Miroslava Slavcheva, and Slobodan Ilic. 2018. Patch-based non-
rigid 3d reconstruction from a single depth stream. In International Conference
on 3D Vision (3DV).

Jason Lawrence, Danb Goldman, Supreeth Achar, Gregory Major Blascovich,
Joseph G Desloge, Tommy Fortes, Eric M Gomez, Sascha Haberling, Hugues
Hoppe, Andy Huibers, et al. 2021. Project starline: a high-fidelity telepresence
system. ACM Transactions on Graphics (TOG) 40, 6 (2021).

Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. 2024. Spacetime gaussian feature splat-
ting for real-time dynamic view synthesis. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

Haotong Lin, Sida Peng, Zhen Xu, Yunzhi Yan, Qing Shuai, Hujun Bao, and
Xiaowei Zhou. 2022. Efficient neural radiance fields for interactive free-viewpoint
video. In SIGGRAPH Asia 2022 Conference Papers.

Shanchuan Lin, Andrey Ryabtsev, Soumyadip Sengupta, Brian L Curless, Steven M
Seitz, and Ira Kemelmacher-Shlizerman. 2021. Real-time high-resolution back-
ground matting. In IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

Wenbin Lin, Chengwei Zheng, Jun-Hai Yong, and Feng Xu. 2022. Occlusionfusion:
Occlusion-aware motion estimation for real-time dynamic 3d reconstruction. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

MM °25, October 27-31, 2025, Dublin, Ireland

[41]

[42]

[43]

[44]

[45

[46]

[47]

[48

[49]

[50

[51]

[52

[53]

[54]

[55

[56

[57

[58]

(59

[60

[61]

[62]

[63

W. E. Lorensen and H. E. Cline. 1987. Marching Cubes: A High Resolution 3D
Surface Construction Algorithm. In Annual Conference on Computer Graphics and
Interactive Techniques (SSGGRAPH), Maureen C. Stone (Ed.). ACM Press, 163-169.
doi:10.1145/37401.37422

A. Maimone, J. Bidwell, K. Peng, and H. Fuchs. 2012. Enhanced personal au-
tostereoscopic telepresence system using commodity depth cameras. Computers
& Graphics 36, 7 (2012).

A. Maimone and H. Fuchs. 2012. Real-time volumetric 3D capture of room-
sized scenes for telepresence. In 3DTV Conference: The True Vision - Capture,
Transmission and Display of 3D Video.

Ricardo Martin-Brualla, Rohit Pandey, Shuoran Yang, Pavel Pidlypenskyi,
Jonathan Taylor, Julien Valentin, Sameh Khamis, Philip Davidson, Anastasia
Tkach, Peter Lincoln, et al. 2018. Lookingood: Enhancing performance capture
with real-time neural re-rendering. ACM Transactions on Graphics (TOG) (2018).
Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In European Conference on Computer Vision (ECCV).
Muhammad Husnain Mubarik, Ramakrishna Kanungo, Tobias Zirr, and Rakesh
Kumar. 2023. Hardware acceleration of neural graphics. In Annual International
Symposium on Computer Architecture.

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. In-
stant neural graphics primitives with a multiresolution hash encoding. ACM
Transactions on Graphics (TOG) 41, 4 (2022).

Richard A Newcombe, Dieter Fox, and Steven M Seitz. 2015. Dynamicfusion:
Reconstruction and tracking of non-rigid scenes in real-time. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR).

Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David
Kim, Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and
Andrew Fitzgibbon. 2011. Kinectfusion: Real-time dense surface mapping and
tracking. In IEEE International Symposium on Mixed and Augmented Reality
(ISMAR).

Keisuke Nonaka, Ryosuke Watanabe, Jun Chen, Houari Sabirin, and Sei Naito.
2018. Fast plane-based free-viewpoint synthesis for real-time live streaming. In
IEEE Visual Communications and Image Processing (VCIP).

NVIDIA Corporation. 2025. NVIDIA nvJPEG Library. https://developer.nvidia.
com/nvjpeg Accessed: 2025-03-28.

Sergio Orts-Escolano, Christoph Rhemann, Sean Fanello, Wayne Chang, Adarsh
Kowdle, Yury Degtyarev, David Kim, Philip L Davidson, Sameh Khamis, Mingsong
Dou, et al. 2016. Holoportation: Virtual 3d teleportation in real-time. In ACM
Symposium on User Interface Software and Technology (UIST).

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Gold-
man, Steven M Seitz, and Ricardo Martin-Brualla. 2021. Nerfies: Deformable
neural radiance fields. In IEEE/CVF International Conference on Computer Vision
(Iccv).

Benjamin Petit, Jean-Denis Lesage, Clément Menier, Jérémie Allard, Jean-
Sébastien Franco, Bruno Raffin, Edmond Boyer, and Francois Faure. 2010. Mul-
ticamera Real-Time 3D Modeling for Telepresence and Remote Collaboration.
International journal of Digital Multimedia Broadcasting 2010, 1 (2010).

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer.
2021. D-nerf: Neural radiance fields for dynamic scenes. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).

Konstantinos Rematas, Andrew Liu, Pratul P Srinivasan, Jonathan T Barron,
Andrea Tagliasacchi, Thomas Funkhouser, and Vittorio Ferrari. 2022. Urban radi-
ance fields. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Hanno Scharr, Christoph Briese, Patrick Embgenbroich, Andreas Fischbach, Fabio
Fiorani, and Mark Miiller-Linow. 2017. Fast high resolution volume carving for
3D plant shoot reconstruction. Frontiers in Plant Science 8 (2017).

Ashwath Shetty, Marc Habermann, Guoxing Sun, Diogo Luvizon, Vladislav
Golyanik, and Christian Theobalt. 2024. Holoported Characters: Real-time Free-
viewpoint Rendering of Humans from Sparse RGB Cameras. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR).

Miroslava Slavcheva, Maximilian Baust, Daniel Cremers, and Slobodan Ilic. 2017.
Killingfusion: Non-rigid 3d reconstruction without correspondences. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Miroslava Slavcheva, Maximilian Baust, and Slobodan Ilic. 2018. Sobolevfusion:
3d reconstruction of scenes undergoing free non-rigid motion. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Patrick Stotko, Stefan Krumpen, Matthias B. Hullin, Michael Weinmann, and
Reinhard Klein. 2019. SLAMCast: Large-Scale, Real-Time 3D Reconstruction and
Streaming for Immersive Multi-Client Live Telepresence. IEEE Transactions on
Visualization and Computer Graphics (TVCG) 25, 5 (2019).

Patrick Stotko, Stefan Krumpen, Max Schwarz, Christian Lenz, Sven Behnke,
Reinhard Klein, and Michael Weinmann. 2019. A VR system for immersive
teleoperation and live exploration with a mobile robot. In IEEE/RST International
Conference on Intelligent Robots and Systems (IROS).

Zhuo Su, Lan Xu, Dawei Zhong, Zhong Li, Fan Deng, Shuxue Quan, and Lu
Fang. 2022. Robustfusion: Robust volumetric performance reconstruction under

[64

[65

=
2

(67

(68

[69

<
=

[71

[72

[73

[75

[76]

[77

<
&

[79

[80

[81

Zingsheim et al.

human-object interactions from monocular rgbd stream. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI) 45, 5 (2022).

Xin Suo, Yuheng Jiang, Pei Lin, Yingliang Zhang, Minye Wu, Kaiwen Guo, and
Lan Xu. 2021. Neuralhumanfvv: Real-time neural volumetric human performance
rendering using rgb cameras. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Justin Kerr,
Terrance Wang, Alexander Kristoffersen, Jake Austin, Kamyar Salahi, Abhik
Ahuja, David McAllister, and Angjoo Kanazawa. 2023. Nerfstudio: A Modular
Framework for Neural Radiance Field Development. In ACM SIGGRAPH 2023
Conference Proceedings (SSGGRAPH °23).

Guillaume Thiry, Hao Tang, Radu Timofte, and Luc Van Gool. 2024. Towards
Online Real-Time Memory-based Video Inpainting Transformers. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhofer, Christoph
Lassner, and Christian Theobalt. 2021. Non-rigid neural radiance fields: Recon-
struction and novel view synthesis of a dynamic scene from monocular video. In
IEEE/CVF International Conference on Computer Vision (ICCV).

Matt Trumble, Andrew Gilbert, Charles Malleson, Adrian Hilton, and John Col-
lomosse. 2017. Total Capture: 3D Human Pose Estimation Fusing Video and
Inertial Sensors. In 2017 British Machine Vision Conference (BMVC).

Hanzhang Tu, Ruizhi Shao, Xue Dong, Shunyuan Zheng, Hao Zhang, Lili Chen,
Meili Wang, Wenyu Li, Siyan Ma, Shengping Zhang, Boyao Zhou, and Yebin Liu.
2024. Tele-Aloha: A Telepresence System with Low-budget and High-authenticity
Using Sparse RGB Cameras. In ACM SIGGRAPH 2024 Conference Papers.
Shengze Wang, Ziheng Wang, Ryan Schmelzle, Liujie Zheng, YoungJoong Kwon,
Roni Sengupta, and Henry Fuchs. 2024. Learning view synthesis for desktop
telepresence with few RGBD cameras. IEEE Transactions on Visualization and
Computer Graphics (TVCG) (2024).

Taku Watanabe and Toshiyuki Tanaka. 2010. Free viewpoint video synthesis on
human action using shape from silhouette method. In SICE Annual Conference
2010.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei,
Wenyu Liu, Qi Tian, and Xinggang Wang. 2024. 4d gaussian splatting for real-
time dynamic scene rendering. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

Zhen Xu, Sida Peng, Haotong Lin, Guangzhao He, Jiaming Sun, Yujun Shen,
Hujun Bao, and Xiaowei Zhou. 2024. 4k4d: Real-time 4d view synthesis at 4k
resolution. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Chip Turner Yann Collet. 2016. Smaller and faster data compression with Zstan-
dard. https://engineering.fb.com/2016/08/31/core-infra/smaller-and-faster-data-
compression-with-zstandard/ Accessed: 2025-04-04.

Jacob Young, Tobias Langlotz, Steven Mills, and Holger Regenbrecht. 2020. Mo-
bileportation: Nomadic telepresence for mobile devices. ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies 4, 2 (2020).

Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu, Qionghai Dai, and Yebin
Liu. 2021. Function4D: Real-time Human Volumetric Capture from Very Sparse
Consumer RGBD Sensors. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Uemoto Yusuke, Keita Takahashi, and Toshiaki Fujii. 2018. Free viewpoint video
generation system using visual hull. In International Workshop on Advanced Image
Technology (IWAIT).

Yizhong Zhang, Jiaolong Yang, Zhen Liu, Ruicheng Wang, Guojun Chen, Xin
Tong, and Baining Guo. 2022. Virtualcube: An immersive 3d video communication
system. IEEE Transactions on Visualization and Computer Graphics (TVCG) 28, 5
(2022).

Zerong Zheng, Tao Yu, Hao Li, Kaiwen Guo, Qionghai Dai, Lu Fang, and Yebin
Liu. 2018. Hybridfusion: Real-time performance capture using a single depth
sensor and sparse imus. In European Conference on Computer Vision (ECCV).
Yifeng Zhou, Shuheng Wang, Wenfa Li, Chao Zhang, Li Rao, Pu Cheng, Yi Xu,
Jinle Ke, Wenduo Feng, Wen Zhou, et al. 2023. Live4D: A Real-time Capture
System for Streamable Volumetric Video. In SIGGRAPH Asia 2023 Technical
Communications.

Domenic Zingsheim, Patrick Stotko, Stefan Krumpen, Michael Weinmann, and
Reinhard Klein. 2021. Collaborative VR-based 3D Labeling of Live-captured
Scenes by Remote Users. IEEE Computer Graphics and Applications (2021).

https://doi.org/10.1145/37401.37422
https://developer.nvidia.com/nvjpeg
https://developer.nvidia.com/nvjpeg
https://engineering.fb.com/2016/08/31/core-infra/smaller-and-faster-data-compression-with-zstandard/
https://engineering.fb.com/2016/08/31/core-infra/smaller-and-faster-data-compression-with-zstandard/

	Abstract
	1 Introduction
	2 Related Work
	3 Pipeline Overview
	4 Capture System
	4.1 Image Acquisition Hardware
	4.2 Local Processing and Buffering
	4.3 Foreground Extraction
	4.4 Communication Interface

	5 Server-Side Reconstruction
	5.1 Scene Reconstruction
	5.2 Server-Client Communication
	5.3 Remote Clients

	6 Benchmark
	7 Evaluation
	7.1 Reconstruction Quality
	7.2 Runtime and Bandwidth
	7.3 Ablation and Limitations

	8 Conclusion
	Acknowledgments
	References

