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Figure 1: RIFTCast allows sharing immersive 3D experiences (left) based on multi-view RGB image sequences that are captured
from various capturing configurations (middle) and offers a new multi-actor benchmark with complex interactions (right).

Abstract

Immersive telepresence aims to authentically reproduce remote
physical scenes, enabling the experience of real-world places, ob-
jects and people over large geographic distances. This requires the
ability to generate realistic novel views of the scene with low latency.
Existing methods either depend on depth data from specialized
hardware setups or precomputed templates such as human models,
which severely restrict their practicality and generalization to di-
verse scenes. To address these challenges, we introduce RIFTCast, a
real-time template-free volumetric reconstruction framework that
synthesizes high-fidelity dynamic scenes from a multi-view RGB-
only capture setup. The framework is specifically targeted at the
efficient reconstruction, transmission and visualization of complex
scenes, including extensive human-human and human-object inter-
actions. For this purpose, our method leverages a GPU-accelerated
client-server pipeline that computes a visual hull representation
to select a suitable subset of images for novel view synthesis, sub-
stantially reducing bandwidth and computation demands. This

This work is licensed under a Creative Commons Attribution 4.0 International License.
MM °25, Dublin, Ireland

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2035-2/2025/10

https://doi.org/10.1145/3746027.3754789

lightweight architecture enables deployment from small-scale con-
figurations to sophisticated multi-camera capture stages, achieving
low-latency telepresence even on resource-constrained devices. For
evaluation, we provide a comprehensive high-quality multi-view
video data benchmark as well as our reconstruction and rendering
code, including tools for loading and processing a variety of data
input formats, to facilitate future telepresence research.
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1 Introduction

The ability to perceive physical presence in remote environments
has been a long-standing area of research, with numerous applica-
tions that open up new possibilities to collaborate and interact over
long distances. Thanks to the advances and increasing availability
of Augmented Reality (AR) and Virtual Reality (VR) technology, the
exploration and sharing of immersive 3D experiences have gained
significant attention. Crucial factors for enabling such authentic
experiences are real-time visualization frame rates, a high respon-
siveness with a minimal latency, as well as free-form navigation
through the virtual environment such that interactions feel natural,
smooth, and immediate. However, remote environments are typ-
ically captured and shared from a fixed set of cameras and their
viewpoints, which necessitates the synthesis of novel views from
an on-the-fly estimated representation of the dynamic scene in
order to meet these requirements — challenges that are addressed
by telepresence methods.

Previous approaches tackled these problems by reconstructing
textured 3D meshes of the scene from multi-view video data [36, 42,
52]. These setups rely on available depth data that is additionally
provided by the respective camera setups to estimate the scene
geometry. In the common use case of human performance captur-
ing, dynamic reconstruction methods have been equipped with
prerecorded template models as priors to ensure plausible mo-
tions [58, 63]. However, while enabling realistic results, template
models inherently restrict the range of applicable scenarios, thereby
excluding cases that involve non-human subjects such as animals
or unconventional motions and objects. Orthogonal to these meth-
ods that aim for reconstructing an explicit 3D model which can be
directly visualized with standard rendering tools, Neural Radiance
Fields (NeRF) [45] and 3D Gaussian Splatting (3DGS) [34] have
demonstrated to provide an astonishing degree of realism in novel
view synthesis from color images only, but require extensive offline
training times, limiting their applicability for real-time scenarios.
This computational bottleneck highlights the need for lightweight
approaches and optimized pipelines to enable telepresence within
reasonable bandwidth and compute constraints.

In this paper, we present RIFTCast, a Real-time, Immersive,
Free-viewpoint Telepresence system that is particularly tailored for
streaming and synthesizing high-fidelity dynamic scenes from var-
ious capture configurations including small-scale consumer-grade
setups as well as large professional capture stages with controlled
illumination. To this end, we designed a template-free, real-time
volumetric reconstruction framework that leverages a visual hull-
based representation computed from foreground mask images to
efficiently select suitable RGB views for rendering. This enables our
method to support arbitrary dynamic scene content exhibiting com-
plex human-human and human-object interactions without the ne-
cessity of precise temporal tracking of correspondences. We achieve
this by an efficient data representation and architectural separation
of responsibilities across our hardware components. In order to
combat the lack of available code for state-of-the-art telepresence
systems, we will release our telepresence framework and toolbox
for handling various different dataset input formats. Furthermore,
we captured a multi-view video data benchmark featuring diverse
scenes and actions, available at https://cg.cs.uni-bonn.de/riftcast.
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In summary, our key contributions are as follows:

o A real-time GPU-accelerated reconstruction pipeline that
synthesizes novel views via adaptively estimating dynamic
geometry and textures directly from multi-view RGB im-
age sequences without relying on depth information or pre-
scanned template models.

o A lightweight, bandwidth-efficient client-server architecture
that offloads intensive computations to the server, enabling
simultaneous low-latency telepresence across multiple users
and a wide range of devices including low-end hardware.

e A new benchmark dataset with complex multi-actor mo-
tions and interactions for evaluating real-time telepresence
systems under diverse conditions.

The source code is available at https://github.com/vc-bonn/RIFTCast.

2 Related Work

3D Reconstruction. Due to the success of the seminal KinectFusion
work [30, 49], reconstructing static 3D scenes with affordable RGB-
D cameras in real time gained significant popularity. To also handle
and reconstruct free-form, non-rigid scenes, DynamicFusion [48]
represented the scene in a canonical space and estimated a volumet-
ric warp field for transforming to the current live frame. Further
extensions explored more robust deformation estimation by ex-
tracting color features [29], handling topological changes [59, 60],
predicting occluded motion [40], or leveraging additional sensors
such as IMU data [79] or high-speed, yet low-resolution image
data [25]. In addition, different scene representations such as surfel-
based models [22, 35] were considered.

While the aforementioned approaches aim for single-camera
scenarios, multi-view RGB-only [24, 64] and RGB-D [14, 15] setups
allow to handle more challenging motions during performance
capturing. To estimate plausible motions, human priors such as
prerecorded and pretrained 3D template models [26, 31, 58, 63]
have been leveraged as additional deformation constraints. Further-
more, recent methods also considered explicitly modeling human-
human and human-object interactions via separate scene repre-
sentations [24, 31, 63]. However, these approaches either need
long a-priori per-scene training [24], do not generalize to arbitrary
scenes [58], or rely on available depth information [14, 15, 31, 63].
Close to our system, some works focused on high-quality texture
rendering [14, 44, 64]. In particular, Motion2Fusion [14] uses projec-
tive texturing and photo-consistency to achieve sharper texturing
results while LookinGood [44] fills holes via neural re-rendering
and has been trained with a human head prior to enhance details.
Despite these similarities, our system works with RGB-only data
and does not impose any constraints on the captured scene content
making it applicable to a wider range of scenarios.

Novel View Synthesis. Traditional novel view synthesis has been
realized via warping of explicit representations such as point clouds
based on multi-view stereo [6, 7, 19, 23]. Another line of research
focused on silhouette-based approaches that leverage the visual hull
as a computationally efficient proxy geometry [9, 12, 50, 71, 77].
Recent progress has been driven by neural scene representations
and, particularly, by the seminal Neural Radiance Fields (NeRF) [45]
which achieved remarkable visualization results. This led to a
plethora of extensions to address its limitations including faster


https://cg.cs.uni-bonn.de/riftcast
https://github.com/vc-bonn/RIFTCast

RIFTCast

MM °25, October 27-31, 2025, Dublin, Ireland

Capture System

RGB Request

Server-Side Reconstruction

Masks
A N o |

T Ring Buffer T

—
Image Processing | —> U

a Primitive
47 Visibility Map
&)
Visual Hull
| S

Camera View
Selection

GPU Matting

RGB Images (select.)

Texture Mapping Inpainting

Figure 2: Overview of the proposed end-to-end telepresence pipeline. The pipeline consists of a multi-camera capturing system,
a server responsible for real-time geometry reconstruction and texture mapping, and client devices for visualization.

training times [8, 20, 46, 47], more accurate geometry estimation
via depth cues [1, 13, 56], or reducing aliasing artifacts [2—4]. Var-
ious methods also extended NeRF-based novel view synthesis to
dynamic scenes, either by modeling deformations [53, 55], or by
considering the temporal dimension [18, 21, 38, 67, 73]. More re-
cently, 3D Gaussian Splatting (3DGS) marked another milestone,
as it enabled real-time rendering performance by representing the
scene as a set of Gaussian splats [34], and has since been further
explored to also handle, e.g., dynamic scenes [28, 37, 72]. However,
these approaches require offline training within minutes or hours
and are thereby limited to replay use cases as opposed to the live
telepresence scenario which is targeted by our method.

Telepresence Systems. Developing immersive telepresence system
has been a challenging endeavor due to the high demands in terms
of real-time visualization of an on-the-fly reconstructed scene model.
3D reconstruction methods working with cheap RGB-D sensors
like KinectFusion [30, 49] enabled telepresence application at room
scale [32, 42, 43]. In this context, live remote exploration of static
places captured by a moving camera has been investigated [61, 75]
and further extended to scenes with dynamically moving peo-
ple [27], collaborative labeling scenarios [81], and robot teleopera-
tion [62]. Other scenarios include teleconferencing system which
primarily focused on high-quality reconstruction and immersive
rendering of the participant’s upper body even without requiring
head-mounted displays [36, 69, 70, 78]. Concerning full human per-
formance captures, more sophisticated multi-view capture setups
have been proposed [5, 10, 17, 52, 54, 80]. In particular, Holoporta-
tion [52] is built upon a fast dynamic 3D reconstruction [15] pipeline
to obtain and stream detailed textured 3D models. Although all the
aforementioned systems pushed the limits towards immersive telep-
resence, they are usually specifically tailored to a certain capturing
scenario and setup and rely on specially crafted pipelines without
respective open-source implementations. In contrast, our telepres-
ence framework builds upon a lightweight architecture that makes
it suitable for various capturing configurations and that will be
released to the community to foster future research.

3 Pipeline Overview

Our full end-to-end telepresence pipeline, from capture to client, is
outlined in Fig. 2, aiming to provide real-time volumetric streaming
of 3D scenes to VR headsets or standard displays using color images
alone. Starting with the multi-view images recorded by the capture
system using a set of pre-calibrated cameras, we perform initial

processing, i.e., color correction and optical undistortion, followed
by a real-time estimation of foreground masks used for geometry
reconstruction. For an in-depth description of our capture system,
please refer to Sec. 4. Note that our pipeline only requires the masks
and images, and as such, other setups can easily be realized and
integrated, which we show exemplary on a minimal setup (Sec. 4.1).

During capturing, the masks and a subset of the images are
transmitted to the reconstruction server (Sec. 5) for geometry
reconstruction and texturing. While the compressed binary masks
are compact and efficient to transmit, the color images are more
demanding in terms of bandwidth. To address this, we propose a
camera view selection strategy based on a visual hull inferred from
the masks and compute per-camera visibility maps. This guides
the selection of an optimal subset of views, balancing quality and
efficiency. The chosen color images are subsequently transmitted
for texture mapping, followed by an inpainting algorithm to refine
textures and correct artifacts.

The final renderings can be displayed on several remote client
devices such as VR headsets or standard displays. Since expensive
reconstruction and rendering are offloaded to the reconstruction
server, the hardware requirements to the client are low, ensuring
broad accessibility across a wide range of devices.

4 Capture System

As mentioned above, our capture system only has a few essen-
tial requirements to ensure compatibility with our reconstruction
pipeline. We describe a full-scale setup using a capture stage for
maximum quality, but also present a more lightweight alternative
to suit different needs and demonstrate the versatility of our system.
In essence, the system must be able to provide synchronized multi-
view images and their corresponding foreground masks along with
pre-computed calibration data that is used for the reconstruction.

4.1 Image Acquisition Hardware

Our capture stage consists of 34 RGB cameras with a resolution
of 24.5 MP affixed to a cylindrical scaffolding with a diameter of
5.25m. In addition, 46 mounted video lights provide a uniform
illumination of the subjects, shining through a stretched fabric
layer that contains cut-out holes for the camera lenses and ensures
an uninstrusive background for matting. All cameras are connected
to an array of capture servers via optical cables where each machine
handles up to 4 cameras and features a NVIDIA RTX 4070 Ti Super
for local processing, 128 GB RAM for buffering, and 8 SSDs with a
total storage capacity of 16 TB.
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Minimal Capturing Setup. Our system requires only standard RGB
cameras, thereby enabling a minimal and cost-efficient capturing
configuration. Depending on the desired output quality, such a setup
can be realized with lower-cost cameras without compromising the
core functionality of our method. To demonstrate the capabilities
of our approach in resource-constrained environments, we conduct
additional experiments using a minimal capture setup of 4 cameras
arranged in a half circle in front of the recorded subject.

4.2 Local Processing and Buffering

The raw images from the cameras are transferred into VRAM and
processed on the GPU. We apply demosaicing, white balance, color
correction, undistortion, and gamma correction within a custom
CUDA kernel and compress the resulting image via JPEG encoding
using nvJPEG [51] for network transfer. The uncompressed images
are also passed to a background matting network to generate fore-
ground masks (see Sec. 4.3). Both the mask and compressed image
are stored in a ring buffer in RAM to conserve VRAM. Using the
frame index, which is an increasing counter, the images and masks
can be arbitrarily retrieved from the buffer for network transfer.

4.3 Foreground Extraction

To extract accurate foregrounds from the captured images, we rely
on the real-time matting pipeline introduced by Droge et al. [16].
Because our setup features a fixed background during capture, we
can reliably incorporate this static background as a prior into the
matting framework to improve its accuracy. Specifically, we record
a set of images of the empty capture stage before recording and then
proceed with the actual capturing process with the present subjects.
Building on this, we finetuned an adopted version of the matting
model proposed by Lin et al. [39] on a small dataset of images 40
acquired in our setup to extract highly detailed foregrounds in real
time. Finally, we binarize each of the foreground-background masks
for further processing.

4.4 Communication Interface

Efficiently transferring mask data between the capture and recon-
struction servers requires special attention as the resulting high
volume of data demands significant bandwidth for transmission
and leads to overhead when uploading the data from the network
thread to the GPU. To address these challenges, we do not represent
the binarized masks as ordinary images but rather compress them
into a run-length encoded format. Since we only require binary
information indicating whether a pixel belongs to foreground or
background, we encode the masks by storing counts of consecu-
tive pixels with identical values in a one-dimensional array and
subsequently computing the cumulative sum over these run-length
counts. In this representation, each bin i denotes the first linear
pixel index of a new segment, where the segment type (foreground
or background) is determined by the parity of i. During decoding,
the pixel value at any given index can be efficiently retrieved via
binary search over these bins and checking the bin’s parity. Addi-
tionally, we store a single flag indicating the segment type of the
first pixel to correctly interpret the parity information.
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5 Server-Side Reconstruction

In this section, we detail the server-side reconstruction and ren-
dering processes of our pipeline. First, we describe our scene re-
construction method in Sec. 5.1 which consists of 1) real-time vol-
umetric geometric reconstruction; 2) a sparse texture selection
algorithm that works without explicit color data; 3) a fast projective
texture mapping approach; and 4) inpainting-based post-processing
to ensure temporally consistent result. This way, we can reduce
data streaming to a small subset of the captured data and, thereby,
significantly save bandwidth and runtime. Finally, we discuss the
server-client communication in Sec. 5.2 and the final visualization
at the remote clients in Sec. 5.3.

5.1 Scene Reconstruction

5.1.1  Volumetric Geometry Reconstruction. Our geometry recon-
struction process relies solely on a set of foreground segmentation
masks, which can be used to construct a visual hull for the geometry
representation. These masks are processed and compressed on the
capture servers, reducing bandwidth requirements, and are directly
streamed and decoded into GPU memory on the reconstruction
server with minimal overhead.

To construct the visual hull from the given masks, we build a
sparse octree that contains the set of candidate voxels forming
a small band around the surface geometry [57]. Afterwards, we
extract the isosurface via Marching Cubes [41] and apply post-
processing by removing duplicate vertices to obtain a clean water-
tight mesh of the scene geometry. Note that all these operations
are executed in real time and independently for each frame which
allows our method to avoid the inherent computational cost asso-
ciated with multi-frame tracking and correspondence estimation.
Furthermore, computing an explicit representation offers advan-
tages beyond reconstruction, as it enables the extraction of auxiliary
information to support various downstream processing tasks, such
as image selection and occlusion handling.

One key application of this representation is the generation of
primitive visibility maps for each camera view, which determine
the visible portions of the reconstructed mesh from that view. This
is achieved by rendering the mesh using the known camera pa-
rameters of the capturing system and storing unique triangle IDs.
Here, the rasterization pipeline automatically handles occlusion of
primitives as non-visible triangles are discarded during z-testing. To
reduce computational overhead, the visibility maps are generated in
a lower resolution where we specify the image width as 400 pixels
and compute the height based on the known camera intrinsics to
preserve the original aspect ratio.

5.1.2  Camera View Selection. Based on the primitive visibility in-
formation and the visual hull-based scene geometry, we developed
a novel camera view selection method that efficiently determines
the most relevant input views for texturing, without requiring ad-
ditional access to color information. Choosing a subset is crucial to
meet the bandwidth and runtime constraints of the telepresence
scenario, so we leverage the per-input-view associated primitive
maps and render a corresponding map for the novel target view V.

To compare visibility across views, we first convert the primi-
tive visibility maps into binary vectors. For each view i € 7 with
I ={1,...,nc}, we define a binary vector b; € {0, 1}"7 where np
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ALGORITHM 1: Greedy Camera Selection

Input: Candidate camera set I ; target vector by € {0,1}"7;
visibility vectors {b;};c r; size of subset k
Output: Selected camera indices S
S0
while by # 0 and |S| < k do
i* « arg max;c 7 (b;, by )
S — SuU{i*}
I T\ {i"}
by « by © (1-b;+)
end
return S

is the total number of primitives. Each entry b;; is given by

1,

We compute this binary representation for each camera as well as
for the virtual viewpoint by.

Our objective is to select a subset S C I of k camera views (i.e.
|S| = k) that best captures the primitives observed in the reference
view by . Thus, we maximize the similarity between the aggregated
visibility and the reference view, that is

if triangle j is visible form view i, )

otherwise.

S = ?Trg‘}nlii <i>ébi,bv> (2)

where ;¢ 7 b; denotes the element-wise disjunction (logical OR)
of the binary vectors b; and (-, -) the dot product.

We address this optimization problem using a greedy strategy,
as shown in Alg. 1. In the first step, we select the camera view i*
that observes the greatest number of triangles present in the target
view. Once a camera is selected, we add it to the subset S, remove
it from the candidate set 7, and update the reference vector by by
setting the entries to zero which correspond to triangles already
covered by the selected view. This way, cameras are prioritized that
are likely to capture previously unseen regions, thereby improving
overall target view coverage. The repeat this process until either all
triangles are covered or k cameras have been successfully selected.
It is worth to mention that, although some cameras might observe
already covered triangles, this additional information is beneficial
to ensure that critical primitives are well represented.

5.1.3  Projective Texture Mapping. After the subset S has been de-
termined, the actual projective texturing is performed in a final
render pass. For this, we request the RGB images of the selected
views, decompress them, and copy them into OpenGL textures. Fur-
thermore, we render depth maps D; from the selected views i € S to
perform occlusion testing. To reduce ghosting artifacts that appear
if the occlusion test near the boundary of objects fails, we use a sim-
ilar technique to Holoportation [52]. However, instead of looking
for discontinuities of the depth values in image space, we render out
the depth maps with slightly inflated meshes such that boundary
pixels are more likely to fail the occlusion test. Given a fragment’s
world position v, we compute its projected UV-coordinates into the
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i-th camera view,
1 . 1
wi(@) = 5 (2P Vi 9)yy) + 5 € 0.1 ©

where the 0 represents the position v in homogeneous coordi-
nates, 7t denotes perspective division, and P; - V; is the combined
view-projection matrix for camera i. We additionally retain the z-
coordinate of this projection, so we can use it for occlusion testing
by comparing it to the corresponding pixel value in the previously
generated depth map D;. All colors passing this depth test are col-
lected and then blended together via additive blending to infer the
final color of the fragment
c= ZiGS Wi Ci, w; = Wpormal . Wyiew. (4
Dies Wi ' '
Here, w; consists of a normal-based weight [52] and a view-based
weight [17]. The first weight wlr.“’rma1 uses normal information n
from the visual hull to minimize distortions by down-weighting
triangles that are significantly tilted with respect to the camera’s
per fragment viewing direction d;:
w?ormal = max(0, {n, d;)%). (5)

The second weight w;’iew is calculated based on the alignment

between the virtual per fragment viewing direction d and d;:
w}'iew = max(O, , di)ﬂ). (6)

Thus, w;’iew prioritizes cameras whose viewing angles closely match
the virtual view, assigning higher weights to pixels observed under
similar viewing directions. The hyperparameters « and § control
the influence of certain directions and we choose @ = 2 and ff = 16
throughout all experiments.

5.14  Video Inpaiting. While our camera view selection and projec-
tive texturing approach enables efficient novel view synthesis, small
parts of the mesh, e.g. close to occlusion boundaries discontinuities,
may not be textured from the k cameras views or exhibit artifacts.
To address these issues, we apply a real-time inpaining algorithm
as a final post-processing step for texture reconstruction. For this
purpose, we additionally export a binary mask with regions that
could not be reconstructed during the previously outlined textur-
ing pass. Afterwards, we apply a video inpaining framework [66]
in these regions which, by taking information from the previous
inpainted frames into account, ensures temporal consistency.

5.1.5 Thread and GPU Handling. In order to achieve good perfor-
mance, it is vital to reduce the amount of memory transfer between
CPU and GPU. As some of the aforementioned operations are ex-
ecuted in CUDA kernels and most of the rendering-related tasks
are performed in OpenGL shaders, we use the interoperability be-
tween the two to facilitate efficient synchronization directly in GPU
memory. Furthermore, we use a multi-GPU architecture where one
GPU is used to handle the geometry reconstruction (Sec. 5.1.1) and
one is used for rendering and inpaining (Sec. 5.1.2 to 5.1.4). Both
of these GPUs are accessed by a different set of threads to reduce
synchronization overhead which is depicted in Fig. 3.

First, the reconstruction thread handles the reconstruction GPU. It
receives the compressed foreground segmentation masks from the
capture server and uploads them onto the GPU where the data is
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Figure 3: Overview of our dual-GPU reconstruction server
with multi-threaded processing.

decoded into a pre-allocated image buffer and used for the geome-
try reconstruction. Second, the rendering thread is responsible for
the texture reconstruction, which is performed on the designated
rendering GPU. This thread performs our proposed camera view se-
lection algorithm and requests the corresponding RGB images from
the capture servers. As mentioned in Sec. 4.2, the capture servers
compress the selected images into JPEG byte streams, which are
then received and directly decoded into the device memory of the
reconstruction server via hardware-accelerated decompression [51].
The decoded data is then copied into an OpenGL texture object,
which eliminates the overhead of traditional CPU-to-GPU transfers,
and the final texture mapping is performed in a fragment shader.

In order to scale the system to multiple remote users, each client
spawns its own rendering thread when connecting to the server.
Each thread spawned this way is also associated with its own client-
exclusive memory to avoid race conditions and expensive synchro-
nization. On top of that, as the rendering tasks are independent
for each client, each thread creates and handles its own OpenGL
context. Synchronization between the two GPUs is only necessary
when copying the geometry representation into the clients’ local
memory, which is directly mapped to an OpenGL vertex buffer for
texturing. Additionally, each client also spawns a post-processing
thread that is responsible for running video inpainting on the ren-
dered results to further improve visualization quality.

5.2 Server-Client Communication

Lastly, the server has to send the rendered result back to the in-
dividual clients which is performed in a dedicated network thread
as shown in Fig. 3. We again use hardware accelerated JPEG com-
pression to encode the final rendering on the GPU and send the
resulting byte stream to the client. In addition, we also encode and
send the depth buffer such that other tasks like reprojection for
VR headsets can be performed on client side. As lossy JPEG com-
pression would create artifacts in the depth map that are noticeable
in the final rendering, the depth data is instead encoded via quan-
tization by remapping the values to 16-bit integers and applying
lossless compression via zstd [74].

5.3 Remote Clients

The last component of our telepresence system are the remote
clients. Since our goal is to perform most of the computationally
expensive tasks on the reconstruction server, the remote clients can
run on comparatively cheap hardware as for example a smartphone
or lower-end graphics cards. In the simplest scenario, they send the
current viewing position and direction to the server and receive an
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image of the reconstructed scene from this location, which then
only has to be decoded and displayed. However, this can lead to
an unpleasant user experience (for example in VR) if the latency is
too high or the reconstruction frame rate is too low. To mitigate
this problem, the reconstruction server also sends depth data of
the scene to the client as described in Sec. 5.2. This additional
information can then be used to generate a point cloud that can
be re-rendered on the client side. Using this technique, the actual
rendering framerate is decoupled from the reconstruction framerate
as necessary intermediate frames can be generated on the client side
which leads to a significantly smoother experience. Note that this
cheap approximation also directly allows to render a second view
on the client side for VR headsets without additional overhead.

6 Benchmark

We introduce a new benchmark dataset that is particularly designed
for multi-view reconstruction and novel view synthesis tasks. The
dataset was recorded with the capturing system described in Sec. 4
and comprises video data across 32 unique scenes. Unlike prior
datasets focused on single subjects [68, 76], ours contains scenes
with multiple actors and a wide range of objects, from rigid to
soft, small to large, and diffuse to reflective. It also features ani-
mals and topologically challenging interactions (e.g., objects moved
out of backpacks, cloth folding), which are designed to test the
limits of dynamic reconstruction systems. The video sequences
cover a variety of actions lasting from 2 to 20 seconds and were
recorded at a resolution of 2664 X 2304 pixels at 25 FPS. Thus,
they offer significantly more details than the TotalCapture [68] or
the CMU Panoptic datasets [33] and mostly match the quality of
the DNA-Rendering [11] dataset but at higher framerates. Each
recording includes high-resolution color images, per-frame fore-
ground masks for both humans and objects, separately captured
background images — a feature not available in the other datasets -
as well as full camera calibration data. To facilitate the evaluation
of generalization to out-of-distribution viewpoints, we added an
additional dedicated camera positioned outside the regular camera
arrangement to act as a challenging test viewpoint.

7 Evaluation

In order to evaluate our telepresence pipeline, we analyze runtime
performance, data transmission bandwidth, as well as reconstruc-
tion quality. An ablation study further demonstrates the impact
of our system design in terms of both quality and runtime. For
evaluation, the reconstruction server runs on two NVIDIA A100
with an AMD Epyc 7713 CPU whereas for the remote client, we
use a Laptop with a NVIDIA RTX 2070 Max-Q. For VR applications,
we send the final rendered image to a Meta Quest Pro.

7.1 Reconstruction Quality

We compare the reconstruction quality of our method to the out-
of-the-box implementation of an offline NeRF (Nerfacto) and 3DGS
(Splatfacto) pipeline via Nerfstudio [65]. For the splatting approach,
we initialize the scenes with point clouds obtained from the visual
hull since random initializations led to poor results. Fig. 4 presents
a qualitative comparison between Splatfacto and our method. Our
approach achieves a reconstruction quality comparable to the offline
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Test View

Splatfacto Ours

Figure 4: Qualitative comparison between Splatfacto, and our
method across different scenes from an unseen test view.

method while faithfully capturing multiple subjects and objects,
including intricate fabric details. Notably, the second row of the
figure reveals distinctly clearer textures, highlighting our method’s
ability to capture fine details. For additional qualitative results, we
refer to the supplemental video.

For a quantitative comparison, we evaluated the methods on a
subset of the DNA-Rendering [11] dataset in Table 1. They pro-
vide data from a capture stage similar to ours with 48 cameras at
2048 % 2448 pixels and we used the masks provided with the data.
The table shows a clear quality-performance trade-off between the
methods. For a fair comparison, we evaluated our method only on
one GPU like the other methods. Note that in our complete pipeline,
the total frame-time is lower due to parallelization and distributed
computing as described previously. While Splatfacto achieves the
best quality in terms of PSNR and SSIM, this comes at a high com-
putational cost. This is because Splatfacto uses all available images
which provides more information in occluded regions (Fig. 5). Our
method also struggles with highly reflective objects because our
blending approach creates artifacts in the highlights.

Table 1: Quality comparison and GPU time between offline
reconstruction and our method on DNA-Rendering [11].
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Test View Splatfacto Ours

Figure 5: Quality-performance trade-off of our method com-
pared to Splatfacto on challenging scenes with occlusions.

Figure 6: Reflective materials can create artifacts if seen from
slightly different views.

In contrast, our method offers a competitive improvement in
quality over Nerfacto but only requires a tiny fraction of its compu-
tation time. The disparity in quality between Nerfacto and Splatfaco
can partly attributed to the relatively low amount of total camera
viewpoints compared to NeRF-related datasets which manifests in
several floaters in Nerfacto’s model. These results clearly demon-
strate that our method substantially outperforms both approaches
in terms of computational speed, while still providing sufficient
reconstruction quality, leading to an effective trade-off between
image quality and processing time.

In addition, we evaluated our framework on our recorded bench-
mark dataset introduced in Sec. 6. We divided our experiments into
two distinct sub-experiments. The upper part of Table 2 presents
a comparison to Splatfactor on a randomly sampled subset of 32
frames from the dataset — a necessary approach given that 3DGS
would require prohibitively long training times on the full dataset.
To ensure best coverage of the dataset, we sampled one random
data point from each video. The lower part of the table presents our
method’s performance on the complete dataset. In both cases, our
method achieves a similar quality as offline reconstruction, while
reaching real-time reconstruction and rendering speed.

Table 2: Quality comparison and GPU time between offline
Splatfacto and our method on our provided benchmark.
indicates evaluation on a subset and T on the full dataset.

Method PSNRT SSIMT LPIPS | Time |

Method ~ PSNR SSIM LPIPS Ti
Splatfacto-big 34.5(29) 0.976(16) 0.028(8) 11.25(43) min S ! T l ime |
Nerfacto-big ~ 29.5(35) 0.920(71) 0.061(28) 1.48(14)h Splatfactof  30.7(49) 0.920(237) 0.058(62) 12.7(4) min
Ours w/o inp. 29.8(27) 0.930(41) 0.031(9)  35.8(25) ms Ours* 20.4(33) 0.960(25)  0.030(16) 52.3(36) ms
Ours 20.9(27) 0.932(40) 0.030(9) 41.5(82) ms Ours' 20.1(33) 0.953(25)  0.033(18) 51.3(43) ms
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Figure 8: Two viewing angles Figure 9: Direction-based
of the reconstruction from (left) vs. our (right) view
our minimal capture setup.  selection.

To demonstrate the adaptability of our framework, we also evalu-
ated its performance using a minimal capturing setup consisting of
4 cameras, as described in Sec. 4.1. Fig. 8 illustrates the qualitative
results for two novel views, showing the ability to capture geometry
and texture details even under constrained data conditions.

7.2 Runtime and Bandwidth

We evaluated the bandwidth for a live telepresence transmission
over an interval of 60 s. In our experiments, the bandwidth gener-
ally fluctuates between 10 Mbit/s and 40 Mbit/s, depending on the
visible scene content and the relative position of the remote view.
In general, the average bandwidth in this scenario is 21.21 Mbit/s,
which shows that our approach can be used in bandwidth limited
scenarios. For the connection between capture and reconstruction
server, the average bandwidth is about 1.4 Gbit/s. It is important to
note, however, that this only impacts the capturing side and does
not affect the remote client’s capabilities.

In Table 3, we report the runtime across various processing stages
in our system. By adding all of these together, we get an overall
average latency of 141.08 ms between a captured frame and the final
reconstruction observed by the client. Thus, the system performs
within the range necessary for seamless human interaction, aligning
with the typical response times observed in comparable systems.
Note that due to the parallel processing of frames, the total frame
rate is determined by the maximum of the individual times, i.e. 23
FPS. This shows that our system is capable of low-latency, real-time
streaming for immersive telepresence applications.

We also evaluated the system scalability in a multi-user scenario
in Fig. 11. While in its current form, the runtime scales linearly
with the number of clients, we still achieve interactive frame rates
when streaming up to 4 users. It is also important to note that this
only affects the smoothness of the reconstructed motion. The client
still has a lag-free viewing experience because it can rerender the
already transmitted geometry from previous frames.
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Figure 10: Effect of image count on system performance.
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. = A
Stage Time (ms) g 150f }
Capturing 34.14(437) g N
Mask Proc. + Reconst.  25.61(631) ‘S 100
RGB Proc. + Rend. 45.40(936) 2 | {
Post-Processing 16.14(213) 50 a
Streaming to Client 19.09(676) : {
Display 0.70(100) r

Lo 1y

Latency 141.08(1406) 0 1 2 3 4

# Clients

Table 3: Breakdown of system run- Figure 11: Number of

time in different processing stages. clients vs. runtime.

7.3 Ablation and Limitations

Ablation. We evaluated how different parts of our system affect
the overall reconstruction quality and runtime. Fig. 9 shows a com-
parison between a naive direction-based camera selection and our
proposed method. Since the naive method does not take geometry
into account, regions that are not seen by any camera can not be
textured which leads to holes. In contrast, our method does handle
these cases and thus finds a better coverage of the target geometry.

Because the pipeline is easily extendable, it is also possible to
consider more images for the reconstruction. As shown in Fig. 10,
the quality only marginally improves since the additional informa-
tion is mainly used to fill in the progressively shrinking gaps, which
highlights the efficiency of our greedy selection strategy. However,
this comes with significantly higher runtimes as using more images
increases memory pressure on both the network and rendering
pipeline. We also evaluated the impact of the inpainting. However,
because the affected regions are small, the metrics (Table 1) are
not well suited to capture the impact, yet the visual differences are
clearly noticeable (see supplemental material).

Limitations. Our method relies on the visual hull, which inherently
struggles to accurately reconstruct concavities. This can lead to
ghosting artifacts as the texture may be projected onto wrong or
missing parts of the geometry. Additionally, we assume diffuse
materials, which limits the usability of our system for specular
or transparent objects. Currently, only geometry data is shared
between users, so additionally caching and sharing RGB data could
further improve scalability and reduce the latency of our system.

8 Conclusion

We presented RIFTCast, a multi-view telepresence framework tar-
geting a wide variety of setups and dynamic scenes without relying
on depth data or template models. Our method leverages a light-
weight visual hull-based representation coupled with a bandwidth-
efficient architecture. We openly share our code along with a novel
benchmark dataset to foster reproducibility and to push the bound-
aries of immersive telepresence research. Furthermore, the real-time
performance and lightweight representation achieved by RIFTCast
suggest its potential utility beyond live telepresence, for instance,
as an efficient preview mechanism for navigating and inspecting
large pre-recorded volumetric video datasets before committing to
more computationally intensive, high-fidelity rendering processes.
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